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ABSTRACT

Today HTTP/1.1 is the most popular vehicle for delivering Inter-
net content, including streaming video. Standardized in 2015 with
a few new features, HTTP/2 is gradually replacing HTTP 1.1 to
improve user experience. Yet, how HTTP/2 can help improve the
video streaming delivery has not been thoroughly investigated. In
this work, we set to investigate how to utilize the new features of-
fered by HTTP/2 for video streaming over the Internet, focusing
on the streaming delivery to mobile devices as, today, more and
more users watch video on their mobile devices. For this purpose,
we design DASH2M, Dynamic Adaptive Streaming over HTTP/2
to Mobile Devices. DASH2M deliberately schedules the streaming
content delivery by comprehensively considering the user’s Qual-
ity of Experience (QoE), the dynamics of the network resources,
and the power efficiency on the mobile devices. Experiments based
on an implemented prototype show that DASH2M can outperform
prior strategies for users’ QoE while minimizing the battery power
consumption on mobile devices.
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1. INTRODUCTION
Recent years have witnessed the steady increase of video traffic

on the Internet. According to Cisco, consumer Internet video traffic
will be 80% of all consumer Internet traffic in 2019, up from 64%
in 2014 [1].

In tandem, mobile devices are gaining increasing popularity, thanks
to the technology advancement and the ever-decreasing prices. As a
result, Internet streaming clients are also experiencing a steady shift
from the traditional wired desktops to the wireless mobile devices.
Today, mobile video traffic accounts for more than half (55%) of
all mobile data traffic [1].

HTTP has been the most popular delivery vehicle for Internet
video traffic, given its considerable market penetration and browser
support. Video content providers, such as YouTube [9] and Net-
flix [7], mostly deliver their videos via HTTP. In HTTP based video
streaming services, the video data are usually encoded into vari-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands

© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2964313

ous bit rate levels, and are further segmented in terms of playback
length, such as 1 second. These segments reside on HTTP servers
and are delivered via HTTP responses. HTTP streaming and the
ISO/MPEG standard is referred as to Dynamic Adaptive Streaming
over HTTP (DASH) [28]. DASH is currently widely used on the
Internet for delivering video streaming to both wired desktop users
and wireless mobile users [25, 26, 18].

Today the most widely used HTTP protocol is HTTP/1.1 [3].
DASH based on HTTP/1.1 can only switch the video quality at the
video segment boundary. This demands accurate bandwidth predic-
tion or a long playback buffer to deal with network jitter for achiev-
ing best streaming performance. Furthermore, HTTP/1.1 also im-
poses some unnecessary overhead. For example, a client needs to
send a request for every video segment. This leads to increased
delay as it takes at least a round-trip time (RTT) before the next
segment is delivered.

The limitations of HTTP/1.1 not only impact Internet stream-
ing delivery, but also Internet content delivery in general. They
have motivated the development of HTTP/2, pioneered by Google
SPDY [22]. As the successor of HTTP/1.1, HTTP/2 has been stan-
dardized in RFC 7540 [4] in February 2015. The new HTTP proto-
col inserts an interpreted layer, where the traditional HTTP requests
and responses are dissembled into frames, above the transport layer.
A typical HTTP session (a request and a response) is represented as
a stream in this layer. In addition to the frames carrying the HTTP
payload, control frames are used to implement new functions, such
as stream termination and server push. More discussions of these
new features are in Section 2.

Due to the improved web access performance, HTTP/2 has started
to replace HTTP/1.1 and is expected to eventually fully replace
its predecessor. This provides an unprecedented opportunity for
utilizing HTTP/2 to further improve the Internet video streaming
performance. For example, HTTP/2 enables the server to specu-
latively push HTTP responses to the client without receiving the
corresponding requests. In this way, a server can push additional
segments back when responding to the client’s request for one seg-
ment. This potentially can eliminate the time overhead (one RTT)
for every segment. Furthermore, HTTP/2 provides a termination
mechanism. Thus, it can enable the client to conduct rate adapta-
tion in the middle of a segment, offering better streaming experi-
ence to the client.

A few pioneering studies have investigated HTTP/2 for Internet
streaming delivery [33, 31, 32, 16, 13]. For example, Mueller et
al. [24] found that Secure Socket Layer (SSL) encryption, which
is mandatory in SPDY, incurred noticeable overhead. Wei et al.
studied the potential of the push mechanism in reducing the live la-
tency [32], eliminating unnecessary requests [31], and saving power
in cellular network [33]. In [16], the authors focused on improving
the live experience of HTTP streaming by exploiting the HTTP/2
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features. It adopts full-push while additional messages are used to
control the video quality adaptation. Cherif et al. [13] also inves-
tigated the push mechanism for fast start in the DASH-compliant
video streaming.

However, properly leveraging HTTP/2 for streaming delivery
also poses some challenges. For example, while utilizing the push
mechanism [16, 33, 31, 32, 13], it is critical to determine the push
number (the number of segments to be pushed). A large num-
ber of segments to be pushed can greatly improve the streaming
throughput. However the pushed contents are wasted if the user
stops watching the video prematurely. Thus, a fixed number of
segments for push, as in [33, 32, 31], risk network resource waste.
In addition, setting the server push with the same bit rate until a
switch request is sent from the client [16] is not a timely response
for adapting to the frequent network fluctuations. Therefore, prop-
erly delivering video on HTTP/2 is not straightforward, and an in-
appropriate use can lead to network resource waste and degraded
user experience.

The problem becomes more sophisticated if the client is a mo-
bile device. Today over 40% of cellular traffic is reported as video
streaming [14]. Mobile devices are inherently energy-constrained
because of the limited battery capacity. As a result, in addition to
the concerns that are often critical for streaming services on desk-
top computers, such as Quality-of-Experience (QoE), power effi-
ciency is of high priority as well.

To address these challenges, in this work, we explore HTTP/2
to improve DASH for streaming to mobile devices and propose
DASH2M (Dynamic Adaptive Streaming over HTTP/2 to Mobile
Devices). DASH2M aims to optimize the mobile user’s streaming
experience while minimizing the resource consumption. Instead of
a fixed number of segments to be pushed, in DASH2M, the number
of segments for pushing is determined dynamically based on the
predicted available network resources and the impact of the user’s
early termination. Compared to prior exploration, DASH2M also
enables graceful quality degradation to deal with network fluctua-
tions in the middle of a push cycle. Furthermore, once the predic-
tion deviates from the reality, the HTTP/2 termination is utilized to
start a new push cycle.

We design and implement a prototype of DASH2M. Experimen-
tal results show that DASH2M can maximize the streaming through-
put, user’s QoE, as well as the battery power efficiency.

While details are presented in the paper, some highlights of our
contributions include the following:

• By exploring HTTP/2 new features, such as server push and
stream termination, DASH2M can greatly improve the Inter-
net streaming delivery to mobile users.

• DASH2M carefully schedules the segment delivery by com-
prehensively considering the QoE required by the user, the
network fluctuations, the potential premature termination, and
the mobile user’s battery consumption.

• The evaluation results show that DASH2M can maximize the
streaming throughput, optimize the user’s QoE, and improve
the power efficiency for mobile devices.

The rest of the paper is organized as follows. Section 2 dis-
cusses background and related work. Section 3 presents the design
of DASH2M. Section 4 describes the prototype implementation.
The results of evaluation is presented in Section 5, and Section 6
concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we briefly introduce the most relevant features in

HTTP/2. This is followed by a discussion on HTTP based video
streaming over the Internet.

2.1 HTTP/2
HTTP/2 [4] originates from SPDY [22] developed by Google.

Cardaci et al. [12] showed that the SPDY protocol slightly outper-
formed HTTP/1.1 over high latency satellite links. To the applica-
tions above the HTTP layer, HTTP/2 shares the same Application
Programming Interfaces (APIs) as HTTP/1.1. The new protocol in-
serts an additional interpreted layer between the application layer
and the transmission layer, which breaks the traditional HTTP re-
quests and responses into frames. HTTP messages are associated
to their own streams, which represent individual HTTP requests
or responses. By manipulating the frames as well as the streams,
HTTP/2 attains some prominent features like stream termination,
server push, etc.
Server push: In HTTP/2, a server is able to speculatively push a
response to the client prior to receiving a corresponding request.
To make the client aware of what all are arriving, the server needs
to send frames named PUSH_PROMISE in an active stream. The
client can then hold the requests with same URLs if the pushed con-
tents are still unavailable, or respond immediately with the pushed
data from the cache. The server push is usually applied to push
associated resources of an HTML page to effectively reduce page
loading time.
Stream termination: Stream termination is achieved by sending
a specific RST_ST REAM frame, either from the sender or the re-
ceiver. When an endpoint receives a RST _ST REAM frame, the
active stream delivering that frame is then closed. Though this is
an effective solution to cancel any undesired transmission, about
half of a RTT is still required.

2.2 HTTP Streaming
One of the most significant characteristics of video streaming

over HTTP is the capability of selecting suitable quality level based
on various network conditions. Commonly the HTTP based stream-
ing protocol, such as MPEG-DASH, only provides the mechanism
supporting the segment-based designation of specific quality level,
and the responsibility of choosing the proper bit rate of next seg-
ments is left to the client side (video player).

Many prior studies focused on the quality selection algorithms.
QDASH [23] integrated a proxy-like bandwidth measurement com-
ponent to accurately and promptly derive the network bandwidth.
The authors also suggested a gradual quality switching algorithm
to improve the subjective user-perceived quality. FESTIVE [17]
identified three prominent metrics, namely efficiency, fairness, and
stability, in HTTP streaming systems. A suite of techniques are
developed to help make beneficial trade-offs among these metrics.
Huang et al. [15] suggested that it is difficult to accurately esti-
mate the underlying bandwidth above the HTTP layer according
to the surveys done on popular video streaming services. In [11],
the authors showed the instability problem when there are compet-
ing flows. The root cause is due to the ON-OFF activity pattern
on the client-side, and a server-based traffic shaper is implemented
to eliminate the quality oscillations. Zou et al. [34] investigated
that accurate bandwidth prediction at short time scales of a cellular
network is possible, and they proposed a scheme based on inte-
ger linear programming to maximize the quality of the downloaded
segments.

With the emerging mobile platforms, power efficiency is also
becoming a major concern for HTTP streaming. GreenTube [19]
found the special power profile of cellular network interfaces, which
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is the special TAIL state in Radio Resource Control (RRC). It main-
tained a smart cache for reshaping the network traffic and helping
the network interface greedily stay in the sleep state. Other stud-
ies [30, 33, 20] shared the same methodology but explored different
contexts. These existing studies indicate that a prominent challenge
is how to balance the trade-off between the magnitude in one down-
load and the probability that the downloaded data are dropped.

3. DESIGN OF DASH2M
Ideally, while watching a video streamed over Internet, a user

expects (1) continuous playback (subject to the buffer size con-
straint), and (2) smooth rate adaptations to the network fluctuations
(graceful and timely bit rate switching according to the available
network bandwidth). If the receiving device is a mobile device,
the user additionally expects (3) a minimum consumption of the
battery power, which depends on (a) how the streaming data is de-
livered, and (b) how much data is received but not watched due
to the client’s premature termination. To achieve these goals, the
media player needs to have an accurate bandwidth prediction.

In this section, first we will present the design considerations of
DASH2M followed by the detailed design.

3.1 Overview of DASH2M Design
To optimize the users’ streaming experience, DASH2M addresses

the above issues as follows.
[Data Delivery vs. Power Consumption] Our previous work [33]

showed that the server push has the capability of reshaping network
traffic, which is important to network interface power efficiency
on mobile devices. Aggregating network transmissions, which can
be easily accomplished via server push, helps the network inter-
face (WiFi or 3G/4G) enter sleep mode more efficiently. While
pushing all segments in one time saves the most energy, it may
also lead to over-pushed contents. On mobile devices, these down-
loaded but not watched segments mean significant waste of battery
power consumption (in addition to the bandwidth waste, which may
also mean monetary loss for some mobile users.). Consequently,
DASH2M aims to balance the push number for achieving power
efficiency on mobile devices.

[Rate Adaptation vs. Network Fluctuations] With the push
mechanism introduced in HTTP/2, some prior studies have sug-
gested to eliminate the request overhead via only sending a leading
request for a set of segments, which we call a push cycle. This
is particularly helpful to live streaming that demands a low live
latency. For example, k-push [33, 32, 31] suggests to push addi-
tional k segments in response to a leading HTTP request. Hence
k-push is only capable of switching to a new quality after every k

segments. Alternatively, full-push [16] keeps pushing segments at a
constant bit rate level until special requests are sent to the server for
switching current video quality. While potentially good for a low
latency if the segment size is very small, neither k-push nor full-
push can support graceful rate switching in the middle of a push
cycle to quickly respond to network fluctuations. That is, in a push
cycle, only one quality level (i.e., bit rate) can be used. Instead,
DASH2M aims to enable fine quality control by allowing bit rate
switching even in a push cycle, swiftly responding to the network
fluctuations.

[Bandwidth Estimation vs. Prediction Inaccuracy] To enable
rate adaptation, DASH2M requires a bandwidth prediction method.
In DASH2M, this is done based on local measurement informa-
tion to estimate the available network resources. Meanwhile, as the
available throughput of a stream is also dependent on the server’s
outgoing bandwidth, the server information can improve the accu-
racy of bandwidth prediction. Thus, as an option, the server’s in-
formation is also used to help estimate the future bandwidth when-

ever possible. Nevertheless, the bandwidth prediction can deviate
from the reality, particularly when the prediction period is long.
Therefore, DASH2M also utilizes the stream termination feature to
cancel all upcoming pushed segments in a timely manner.

To accomplish these goals, DASH2M consists of the following
four major components:

• Push Number Determination per Cycle (subsection 3.2): it
quantitatively decides how many segments should be pushed
in a push cycle.

• Bit Rate Selection per Segment (subsection 3.3): it deter-
mines the bit rate of each involved segment in a push cycle
according to the bandwidth prediction.

• Bandwidth Prediction (subsection 3.4): it predicts the band-
width availability in the next push cycle based on local infor-
mation and optional server information.

• Push Cycle Termination (subsection 3.5): it is a complement
method for correcting the inaccuracy of bandwidth predic-
tion.

Figure 1: A DASH2M session with server push

DASH2M considers the design of these components based on a
push cycle, illustrated by Figure 1. That is, the network activities
of a DASH2M session consist of HTTP sessions interleaved with
probable idle durations. According to the server push technique,
several segment transmissions are bonded together and only one
HTTP request overhead is incurred at the beginning of the trans-
mission. As shown in Figure 1, a playback buffer stores video
data received and relays the data to the display at a constant rate.
The buffer accepts data from the network at a varying speed. The
network activities are composed of push cycles, which can be fur-
ther divided into transmission stages and sleep stages. To this end,
DASH2M is to launch a push cycle with a push number K, denot-
ing the number of segments involved, and the bit rate arrangement
of these segments, represented by

b = (b1, . . . ,bK).

Next, we present how DASH2M decides the push number K and
the bit rates b in a cycle.

3.2 Push Number Determination per Cycle
Intuitively, a larger push number K can lead to less consumed

battery energy. But the amount of pre-fetched segments may un-
necessarily drain the battery energy due to potential user abandon-
ment behaviors [27]. Furthermore, with a larger K, the bandwidth
prediction period for this push cycle is also longer, which poten-
tially introduces more prediction inaccuracy. Ultimately, K is also
constrained by the playback buffer size. Therefore, K cannot be
too large and is bound by Kmax. At a high level, a streaming ses-
sion always starts with a small K (e.g., 2) for the low startup la-
tency. During the playback, if the predicted bandwidth increases,
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Table 1: Variables of A Push Cycle

Symbol Meaning

K the segment number in the push cycle

bi the bit rate of the i-th segment

D the segment duration

t0 the start timestamp of the push cycle

B(t) network throughput of time t

L0 the buffer length at t0
Lc the critical buffer length

S0 the buffer size at t0
Smax the maximum buffer size

K will increase accordingly, but not beyond the upper bound. If the
predicted bandwidth decreases, K will decrease accordingly.

As K is closely related to the energy consumption, DASH2M
dynamically determines K that can minimize the potential energy
consumption on the mobile device. To characterize the energy effi-
ciency, we first calculate the overall energy consumption of a push
cycle. We characterize the time distribution, which includes Tcyc

(the push cycle duration), Ttrans (the transmission stage duration)
and Tsleep (the sleep stage duration), and combine them with the
power profile of network interfaces to calculate the energy con-
sumption. The time distribution of the push cycle, given a K, is











Tcyc = L0 +K ·D−Lc

Ttrans = RT T + ∑
K
i=1 bi·D
E[Bi]

Tsleep = Tcycle−Ttrans

.

E[Bi] represents the bandwidth expectation until the i-th segments
are transmitted, and Table 1 lists the parameters we use. It is worth
noting that during Tsleep the network interface may consume differ-
ent levels of power. We will explain the details next.

With the corresponding power profile, which depends on device
types, network types, network operators and etc., we can derive the
overall energy consumption of a push cycle for a smartphone as
follows:

Energy(K) = Ttrans · pa +C · pt +(Tcyc−Ttrans−C) ·Pi,

when using a 3G/4G network [19], where pa, pt and pi are the
power consumption when the network interface is in ACTIVE, TAIL
and IDLE states, respectively. C is the duration of the TAIL state.
For cellular network interfaces, usually the intermediate TAIL state
with a constant duration is desired for promptly returning to the
ACTIVE state. The power profiles of other network interfaces (e.g.,
WiFi) can be presented similarly with slight modifications.

Then the watching energy efficiency can be represented as
Energy(K)

Kw
,

where Kw is the watched segment number in this push cycle be-
fore abandonment. We define P{t ≥ T} as the probability a user
watches this video for at least T seconds. This probability can
be obtained from a general distribution, such as the one suggested
in [27], which is characterized by the session duration. We define
E (·) as the watching energy efficiency, and then we can calculate
its expectation in a push cycle, for a specific K, as

E[E (K)] =
K−1

∑
i=1

P{t0 +(i−1)D ≤ t < t0 + iD} ·Energy(K)

i ·P{t ≥ t0}

+
P{t ≥ t0 +KD} ·Energy(K)

K ·P{i≥ t0}
.

(1)

For every push number candidate, we can calculate a correspond-
ing watching energy efficiency expectation from Eq. 1. By compar-
ing these results, a best K leading to the lowest watching energy ef-

ficiency is selected as the pushed segment number in the next push
cycle. So we have

argmax
K

E[E (K)] for K = 1, . . . ,Kmax,

where Kmax is the upper bound of K. As mentioned before, Kmax

is constrained by a fixed duration, after which the bandwidth pre-
diction is believed unreliable. In addition Kmax also helps to limit
the space of candidate Ks. A constant KC

max is helpful in reducing
complexity of searching optimal K at the beginning stage of a video
session, where the probability of users stopping is high. The prior
study by Shafiq et al. [27] shows that terrible network dynamics
increase the user abandonment rate. So we scale down Kmax if the
quality level of the last segment in the last push cycle is not the
highest one. We have

Kmax = max(
KC

max

2|b|−Index(b∗)
,1) ,

where b∗ is last bit rate level, and Index(·) represents the index of
target bit rate. Kmax is also constrained by how many segments
the remaining streaming session is composed of. So we have the
maximum K as

min(Kmax,⌈
te− t0

D
⌉),

where t0 and te are the timestamps of now and the end of the video
session, respectively.

Once the number of segments involved in next push cycle is de-
termined, an efficient bit rate arrangement for these segments can
be determined, as presented in the next subsection.

3.3 Bit Rate Selection per Segment
The goal of bit rate selection for each segment in a push cycle is

to maximize the quality of the video for the user, along with sev-
eral constraints fulfilled for the user’s QoE requirements. A set of
ideal bit rates should be the highest ones that the network can sus-
tain. Meanwhile, with such bit rate selection, users should be able
to watch the video without noticing stalling playback and abrupt
quality switches.

As a result, given a K, and a bandwidth prediction function that
predicts B(t) (subsection 3.4), our bit rate selection problem is for-
mulated as an integer linear programming. If the segment duration
is consistent across the video session, we have the objective func-
tion as

maximize:
K

∑
i=1

bi.

In practice, the bit rate bi is usually selected from a discrete set.
During a streaming session, to maximize the QoE experienced

by a user, we need to minimize the re-buffering events, abrupt qual-
ity degradation. In addition, the memory a mobile device provides
for a streaming session is not unlimited [21]. Therefore the above
objective function is subject to several constraints:
Continuous playback: To avoid playback stalls, the time used to
transmit the next segment should be less than current buffer length.
In a DASH session based on HTTP/1.1, we have

Treq +Tresp < L0,

where Treq and Tresp are the transmission times of the request and
the response, respectively. In a push cycle powered by HTTP/2,
only one request is required for multiple responses. If the time
to transmit the request payload is considered trivial and the buffer
length is extended by a segment duration whenever a segment has
been downloaded, the constraint now becomes
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RTT +
∑

n
i=1 bi ·D

E[Bi]
< L0 +(n−1)D for n = 1, . . . ,K.

Smooth playback: Existing research [23] shows that gradual qual-
ity adaptation is more favored in improving subjective perception
experience. Therefore we smooth the video quality adaptation in
two dimensions, namely quality duration and quality variance. In a
quality degradation process, if the duration of an individual video
quality is too short, users can still perceive an abrupt quality degra-
dation even when every intermediate bit rate is traversed. So every
segment should be in a group of continuous segments at the same
bit rate, and the group size, denoted as m, is sufficiently large before
moving on to next higher or lower quality group.

To formalize such QoE requirements, a bit rate arrangement in a
push cycle can be expressed a vector of J two-tuples, 〈b̂,n〉1, . . . ,〈b̂,n〉J ,
where J ≤ K. So the quality duration constraint can be expressed
as











n1 +n∗ ≥m n∗ < m

n1 ≥ m n∗ ≥ m

n j ≥m 1 < j < J

,

where n∗ and b̂∗ are the group size and the bit rate inherited from
the last group of last push cycle. To represent the quality variance
constraint, we have











b̂1 = b̂∗ n∗ < m

b̂1 ∈ {N(b̂∗), b̂∗ } n∗ ≥m

b̂ j ∈ {N(b̂ j−1), b̂ j−1 } j > 1

,

where N(·) represents the neighboring bit rate levels.
Maximum buffer size: Usually the buffer size of a media player
on a mobile device is bounded [21]. Every time a segment is down-
loaded and is put into the buffer, the total buffer size should not
exceed the watermark upper bound. We denote the buffer size as S.
Then the downloaded segments are subject to

S0−Sp +
n

∑
i=1

bi ·D < Smax for n = 1, . . . ,K,

where Sp is the data amount sent to the decoder.
By solving this integer linear programming problem, we can get

the bit rate selection result for each segment in the cycle.

3.4 Bandwidth Prediction
To effectively utilize the network resources according to the bit

rate selection algorithm, DASH2M demands a reliable and accurate
bandwidth prediction. In DASH2M, the future bandwidth avail-
ability is predicted by two means, a short-term estimation based
on local measurement and a long-term prediction by analyzing the
population distribution of all users watching the video from the
server. The latter is optional because the availability of a server’s
assistance is not guaranteed.
Local measurement: Previous study [29] shows that the simple
prediction based on historical information has the best prediction
accuracy. So we use the measured bandwidth information of pre-
vious segments to predict the future bandwidth. Specifically, We
extract the measured information of last push cycles, and use the
average value as the future bandwidth.

However, not all the measurement points are reliable. Only two
measurement points, the one measured where the first segment is
transmitted, and the one measured at the end of the whole push
cycle are selected for a push cycle. The reason for not choosing
other points is due to potential inaccurate information associated
with them. For example, a segment may already be in the cache (in

a web browser context), and it only takes around ten milliseconds
to complete this operation.

If we assume that there is a historical time point only the newer
information after that can be used, then there is a maximum effec-
tive measurement duration “Dmax”, ending at now. We then have a
set of data points available: Bm(t

∗
1 ), . . . ,Bm(t

∗
u ), where t∗1 > .. . > t∗u

and t∗u >Dmax. Correspondingly, we have a weighted function w(t)

that
∫ Dmax

0 w(t)dt = 1. Hence, we have

B =
u

∑
i=1

Bm(t
∗
i )

∫ t0−t∗i

t0−t∗i−1

w(t0− t∗i )dt,

where t∗0 = t0. The weighted function can be defined as

w(t) =
2

D2
max

t.

(Optional) Server support: Note that the throughput of a stream-
ing session is also dependent on the server’s network bandwidth al-
location. A population distribution of all users watching the video
along time, combined with the network capacity of the server, is
beneficial in predicting the trend of available bandwidth variation
in the long term. The bandwidth function provided by the server is

Bs(t) =
B∗

A+
∫ t0+t

t0
(a(x)−b(x))dx

,

where B∗ is the overall outgoing bandwidth capacity of the server.
A is the user number at time t0. a(x) and b(x) are the user arrival
rate and departure rate, respectively.

When the server support is available, we can combine the local
measurement and the remote bandwidth information for more ac-
curate prediction. We choose the lower value for a given t as the
predicted bandwidth.

3.5 Push Cycle Termination
For a streaming session, a stable state where the video bit rate

approximates the available bandwidth means that a relatively small
playback buffer is adequate on the client player. So we always ex-
pect that the next scheduling operation starts as long as the buffer
length is smaller than a critical value Lc, for example, two seg-
ments.

However, accurate bandwidth prediction is not always guaran-
teed. A bandwidth mismatch can be discovered by periodically
comparing the measured bandwidth values to the predicted ones.
If the real bandwidth is higher than the prediction, the expected
video quality and power efficiency are guaranteed. Thus the risk
of degrading current streaming session comes from the bandwidth
decrease. When a bandwidth mismatch is found, a longer buffer
length is helpful in scaling down the video quality gracefully. So
a relaunch of the transmission stage to reschedule video quality
is preferred when a large bandwidth mismatch is discovered. The
bandwidth mismatch can be quantified as

Di f f (t) =
∫ t

t0

Bm(t)dt−
∫ t

t0

B(t)dt,

where Bm(t) is the measured bandwidth function.
∫ t

t0
Bm(t)dt shows

the actual consumed network resources, and the second component
represents the predicted consumed network resources. We can ex-
pect a push cycle to relaunch once Di f f (t) reaches a threshold.

To relaunch, DASH2M utilizes HTTP/2 stream termination. It
works as follows. After the client sends a request with a push direc-
tive, it is expected to receive PUSH_PROMISE frames notifying
the client what segments are being pushed. Corresponding URLs
and stream IDs can be extracted from these PUSH_PROMISE frames
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and preserved at the client side. These pushed segments will be re-
turned to the application level once the client receives all the con-
tent in the promised streams. If a bandwidth mismatch is found, the
client can cancel the promised but not complete streams by sending
RST _ST REAM frames associated with the stream IDs.

Procedure 1 DASH2M segment scheduling in a push cycle

Input: Bl(t), Bs(t), Energy[·], RT T, m∗, b∗, P{·}

Determine Kmax

E[E ]min← ∞

B(t)← synthesizing Bl(t) and Bs(t)

for K in 1 . . .Kmax do

Calculate b by integer linear programming
Calculate E[E ]
if E[E ]< E[E ]min then

Kmin← K

bmin← b

E[E ]min← E[E ]
end if

end for

b∗← b[K]
m∗∗← 1
for K in (Kmin−1) . . .1 do

if b[K] = b[Kmin] then

m∗∗← m∗∗+1
else

break

end if

end for

if m∗∗ = Kmin then

m∗← m∗+m∗∗

else

m∗← m∗∗

end if

return (Kmin,bmin)

As shown in Procedure 1, the client first determines the range of
push number candidates. Then for each possible K value, a set of
bit rates are selected via linear programming. With such designs,
the algorithm sketches the segment scheduling in a push cycle for
DASH2M.

4. IMPLEMENTATION
To evaluate the performance of DASH2M, we have implemented

a prototype. We present the implementation details in this section.

4.1 DASH2M Server Implementation
We build our DASH2M Server on the top of the Jetty Project [5],

a Java based HTTP server that has implemented features of HTTP/2.
The major functions implemented on the server side include the fol-
lowing.
Streaming Push: The core module of DASH2M is implemented as
a Filter class. A HTTP header named PushSegments is used to indi-
cate a new push cycle. All URLs of the remaining segments in this
push cycle are passed in as the value of this field. Once this field
is received as part of a request, 1) the server will then build a new
stream to send the corresponding response, 2) PUSH_PROMISE

frames of the pushed segments will also be sent over this stream, 3)
the server will also open a stream within a newly launched thread

for each pushed segment, 4) the server determines the dependencies
of these pushed segments based on when they should be played.
These segments are sequentially pushed without affecting the nor-
mal playback.
Stream Termination: While the HTTP/2 interfaces that manip-
ulate frames are not exposed to an application level program, we
implement a workaround to simulate the HTTP/2 stream termina-
tion feature as our client is implemented in javascript. To relaunch a
push cycle, we attach a special HTTP header, named ResetStreams

to request that. If the server receives such a request, before it
launches a new push cycle, the server sends the RST _FRAME

frames to all active streams to close them. The client can expect
the failures of all other ongoing sessions when sending the stream
termination directive.

4.2 DASH2M Client Implementation
We implement the video player based on the open source project

dash.js [2], which is a DASH-compliant video player in JavaScript.
The video player is packaged as a web-app and deployed on an
HTTP server. Our player has three modules, which are the push-

cycle configuration, the bandwidth monitoring, and the bandwidth

prediction modules as described below.
push-cycle configuration: This module determines both the num-
ber and qualities of segments involved in the next push cycle. This
component is normally triggered when the playback buffer reaches
a critical level, and it is abnormally triggered by the bandwidth

monitoring module when a bandwidth mismatch is found. This
module takes the output of the bandwidth prediction module and
follows Procedure 1 to generate the configuration of the next push
cycle. Then, the player encodes this result in the header of the first
request and sends that request to the server for launching a push
cycle.
bandwidth monitoring: This module is triggered by the onProgress

callback of the standard XMLHttpRequest API of the web browser.
It is periodically invoked when the player receives the response
content. It estimates the instantaneous bandwidth by checking how
many bytes have been loaded, and further compares the result to
the predicted value generated by the bandwidth prediction module.
As long as a significant mismatch is found, it updates the prediction
function and calls the push-cycle configuration module to relaunch
a push cycle. The sent request carries the directive to terminate all
ongoing streams on the server.
bandwidth prediction: This module outputs the predicted band-
width. It keeps accepting local measurement results from the band-

width monitoring module and the remote server (optionally) for up-
dating its output. It follows the description in subsection 3.4 to
estimate the bandwidth.
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4.3 Scheduling Algorithm Implementation
The core of DASH2M lies in the segment scheduling at the client

side as described by Procedure 1. It uses linear programming and
is implemented in the Push-cycle Configuration module. When the
push number is large, the time used to search the optimal result is
impractical because of the huge solution space. So we optimize the
linear programming implementation with two heuristics. First, we
impose a time constraint on the linear programming implementa-
tion. We think a few hundreds of milliseconds is reasonable while
not impairing the streaming throughput. Thus, the result is locally
optimal since only a part of the solution space is explored. Second,
to improve the performance of linear programming, we take ad-
vantage of the objective function that is to seek the maximum sum
of the bit rate sum. The search always starts from the highest bit
rate level when constructing solutions by deepest first search. The
greedy algorithm greatly helps find feasible solutions in the limited
time with high probability.

5. EVALUATION
To evaluate DASH2M, we run experiments to compare with the

standard HTTP/1.1 and the k-push scheme. We actively manipulate
the network conditions to observe how the different schemes react
to the network fluctuations.

5.1 Experiment Setup
We firstly conduct a series of experiments in a control envi-

ronment for characterizing the basic features of our scheme. The
HTTP server resides on a Linux machine with a 64-bit Intel Pen-
tium CPU 2.8 GHz dual core, 6 GB memory, 2×32 KB L1 caches,
2× 256 KB L2 caches and shared 3 MB L3 cache. The installed
operating system is Ubuntu 12.04 with Linux kernel 3.13.0-66-
generic.

The Jetty server supporting DASH2M and k-push is launched as
a normal HTTP server, serving all requests to port 8444 in HTTP/2.
It also supports HTTP/1.1 DASH based streaming. The available
resources on the HTTP server includes the video player and the
video segments, which are packaged by the tool MP4Box [6]. The
Chrome browser is used to acquire and run the video player. The
network shaping rules are imposed on this interface targeting the IP
packets that have 8444 as either dport or sport. Such a setting is to
eliminate the impact of other uncertain factors so that we can get a
more accurate assessment of DASH2M functions.

5.2 Linear Programming Evaluation
We firstly evaluate the performance of our linear programming

implementation. In the experiment, the video bit rate levels are set
as 51 kbps, 195 kbps, 515 kbps and 771 kbps, respectively. The
segment duration is 2 seconds and the RTT is 50 milliseconds. The
buffer length is 10 seconds and we always start with b∗ = 195 kbps
and n∗ = 1. We search the solutions for K ≤ 20. We compare
our time-bound greedy searching algorithm, which exits after 100
milliseconds, with the optimal algorithm. The bandwidth variation
in the future 40 seconds is predictable and the value varies every 10
seconds as follows. The bandwidth candidates are selected from
{60,200,600,800} kbps randomly so there are 256 combinations
to traverse. We repeat the experiment with different m, which is
2,3,4, to observe whether the result differentiates with the different
scales of legal solution space.

We define the quality distance as the bit rate level difference from
the scheduled bit rate to the optimal one. For example, if we sched-
ule a segment with the bit rate of 51 kbps while the optimal one
is 515 kbps, the quality distance is 2. We use the average quality
distance for specific K to reflect the quality degradation of a so-
lution from the optimal quality arrangement. If we can not get a

solution for a specific K, the lowest bit rate level is selected for all
segments. We exhaustively search the optimal solutions from the
solution space of 420, and the average size of the solution space is
52425, 9033, and 2867, respectively, corresponding to the increas-
ing m. The time to perform the search is on average 15.58, 2.51, and
0.8 seconds. For the time bound greedy algorithm, the average legal
solution space is bound by the limited search times, which are 336,
341, and 343, respectively. We report the average quality distance
statistics in Figure 2. The y-axis is the average quality distance
with 95% confidence interval, and the x-axis represents different K

ranges. The bars in a cluster shows how the quality distance varies
when the legal solution space, i.e. m, changes. We can see that both
the m and K increments lead to a higher average quality distance,
which is reasonable since the m increment means a larger legal so-
lution space and the K increment means a larger solution space.
Ultimately, across all parameter sets, the video quality does not ob-
viously degrade due to our time-bound greedy algorithm while the
average quality distances are always less than 0.2.

5.3 Rate Adaptation Evaluation
We evaluate how different schemes react to the network dynam-

ics. In particular, we want to assess whether DASH2M can bring
in graceful rate adaptation. The video we used in this experiment is
two-minute long, and is encoded into four different bit rate levels,
which are 51 kbps, 195 kbps, 515 kbps, and 771 kbps, respectively.
The segment duration is 2 seconds. We test different push numbers
2, 5, 10, 20 with the k-push schemes. In addition, we also repeat
the experiments for regular DASH streaming based on HTTP/1.1,
denoted as DASH in the figures.

In the regular DASH scheme, the client estimates current band-
width according to the duration for receiving the last segment, and
chooses the maximum bit rate level that are smaller than the mea-
sured bandwidth as the quality of next segment to request. The
k-push schemes follow the similar rule but estimate the bandwidth
by measuring across the entire last push cycle. Meanwhile the net-
work variations are preset in DASH2M, in order to eliminate the
impact of bandwidth prediction. We set the watch probability to
1 all the time since the experiment is conducted until the end of
video. In this case, DASH2M prefers a large K for the power effi-
ciency. The quality duration m is selected as 4 to smooth the quality
variations in the video session.

In all schemes, the critical buffer is set as 20 seconds, which
means a new push cycle is launched as long as there are no other
active push cycles and the buffer length is below the critical value.
We manually introduce the bandwidth drops to result in the band-
width sequence of {1600, 800, 600, 400, 800, 600, 400} kbps. The
bandwidth varies every 15 seconds. The RTT is set as 20 ms all the
time, and all schemes start from the lowest bit rate.

Figure 3 shows the request result of a playback session. The
x-axis is the time when the requests are sent and the y-axis is bit
rates of the requested segments. The bandwidth changes are also
plotted as a solid line in the figure. x-push presents the k-push
scheme with the push number set to x. As we can observe from
the figure, the regular DASH scheme performs similar to the 2-
push scheme and they can react the bandwidth variation in a timely
manner. DASH2M scales up the requested bit rate with a little
delay at the beginning because the bit rate switch is gradual in
DASH2M. When the bandwidth drops at the 30th and the 90th sec-
ond, DASH2M firstly exploits the current buffer data to maintain
the maximum video quality for a while, and then gracefully de-
creases the requested bit rate. When the requested bit rate is low
at around the 60th second, DASH2M reduces the push cycle and
it promptly increases the requested bit rate since the higher band-
width is discovered. For the other k-push schemes, 5-push and
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Figure 5: Buffer length variations
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Figure 6: Requested segment bit rate
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Figure 8: Buffer length variations

10-push fit the bandwidth variation well because their push cycles
(10 and 20 seconds) approach the bandwidth variation period. 20-
push fails to accommodate the network variations, which are more
frequent than its push cycle.

Figure 4 shows how the user perceived quality changes for these
schemes. In this figure, the x-axis is the playback time in seconds
and the y-axis is the playback video bit rate in kbps. We can see
from the figure that DASH2M introduces graceful quality degrada-
tion and improvement in response to the network dynamics. While
for all other schemes, there are a lot of fluctuations and abrupt qual-
ity changes on the client side.

We further calculate the average quality of segments that played
on the client. The regular DASH based on HTTP/1.1 has an average
bit rate of 485 kbps. In the 2-, 5-, 10- and 20-push schemes, the
client received the video at an average bit rates of 489 kbps, 440
kbps, 434 kbps and 293 kbps, respectively. While in DASH2M, the
client received the highest average quality across all the schemes,
which is 572 kbps.

Figure 5 further shows the buffer variation of all schemes in the
above experiment. In this figure, the x-axis is the playback time
in seconds, and the y-axis represents the buffer length in seconds.
From the figure, we can observe that in the regular DASH scheme
and the 2-push and 5-push schemes, the buffer can be maintained
at a stable level, indicating that they can react to the network varia-
tions in a timely manner. There are large fluctuation when the push
number increases. We can see that the 10-push and the 20-push
significantly consume the buffer when there is an unpredictable net-
work variation. In the worst case, 20-push triggers a re-buffering at
around the 60th second when the bandwidth is the lowest.

On the other hand, with the accurate bandwidth information, Fig-
ure 5 shows that DASH2M can always maintain the playback buffer
at a low level even when there are rate adaptations, since DASH2M
always aims to serve the client with the highest possible bit rates to
maximize the video quality.

5.4 Push Termination Evaluation

We have shown that DASH2M outperforms the push schemes
with a fixed push number K with graceful quality changes in re-
sponse to network dynamics. Next we test to see whether the stream
termination can also assist DASH2M if the actual bandwidth devi-
ates from the predicted one. That is, when prediction is not accu-
rate. We use the configuration of last experiment except the net-
work variations are set as the sequence of {1600, 600, 1600, 600}
kbps. The bandwidth drops occur every 30 seconds.

Figure 6 shows the requested segment bit rates distribution plot-
ted against time. Two deviated points can be found for DASH2M
when the bandwidth drops to a low value. This is the time when
DASH2M has monitored a significant bandwidth mismatch, and
DASH2M immediately sends a directive for terminating all active
push streams to the server. DASH2M further decided to switch to
a lower quality next to the current bit rate level. The other schemes
perform similarly as in the previous experiment that a large K leads
to the failure of adapting to the bandwidth fluctuations.

Figure 7 further shows the received video quality at the client.
As we can see from the figure, the results are similar to what we
have observed in the last experiment. DASH2M still introduces the
highest average perceived quality, which is 647 kbps. The regular
DASH scheme based on HTTP/1.1 streams the video at an average
rate of 586 kbps. The k-push schemes have the average rates of 644
kbps, 561 kbps, 512 kbps and 357 kbps, respectively, following the
increasing push number from 2 to 20.

Figure 8 shows the corresponding buffer level variations. Com-
pared to the last experiment, DASH2M accumulates the buffer in a
faster manner, which is similar to the k-push schemes with a high
push number (e.g., 10 or 20) when the network resources are abun-
dant. However when a bandwidth mismatch is found, DASH2M
terminates the segment pushing, which helps the client promptly
switch to an appropriate bit rate without consuming the entire buffer.
While for 10-push and 20-push, there are re-buffering events due to
the drainage of the playback buffer.
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5.5 Power Efficiency

We also conduct a simulation based on a large scale of HLS
trace to evaluate the power efficiency of DASH2M. Our purpose
is to find out how many segments are over-pushed and how much
energy is wasted. This trace is measured on the mobile devices,
which ranges from 07/15/2015 to 08/31/2015, and there are∼ 12
million records from the second largest mobile streaming service
provider Vuclip [8]. To study the over-push result, we implement a
simulator in perl following the same algorithm described in Proce-
dure 1. In the simulator, we set the segment duration as 2 seconds.
In order to retrieve a general distribution of the watching portion,
we split the whole data set into two sub-traces with the equal size.
One of them is summarized as a normalized distribution, which is
represented in Figure 12. This distribution is further built into the
simulator. The other sub-trace is fed to the simulator as the input.
For evaluating the energy consumption of a push cycle in cellular
network, several parameters are required. We set the timeout value
between ACTIVE and TAIL as 5 seconds and the timeout value be-
tween TAIL and SLEEP as 12 seconds, which are the typical values
from AT&T [10]. The average power consumed when transmitting
data is set as 800 mW and the TAIL state consumes 400 mW on
average, which is measured on ASUS ZenPad 10.

We vary the ratio of the video quality to the network bandwidth
for observing how DASH performs under different network utiliza-
tion. The time used to transmit a video segment is set as 10%, 40%
and 70% of the segment duration. We present the simulation re-
sults in Figure 9, 10 and 11, respectively. The x-axis is the energy
wasted by over-pushed segments and the y-axis is the cumulative

distribution function. The k-push schemes and the regular DASH
scheme perform almost the same whatever the bandwidth utiliza-
tion is. The regular DASH scheme rarely downloads the segments
that users do not watch, and the segments over-pushed by 20-push
waste the most energy, whose value increases with the transmission
time. DASH2M aggressively increases the push number when the
network resources are abundant, because the transmission time is
short and the over-push operations will not waste too much energy.
However if the network resources are limited, DASH2M then care-
fully chooses a smaller push number and no more energy is wasted.
Therefore DASH2M is aware of the power profile of current net-
work interface and adopts an efficient transmission solution.

6. CONCLUSION AND FUTURE WORK

As the major delivery mechanism for Internet streaming delivery,
HTTP is starting the transition from HTTP/1.1 to HTTP/2, which
offers a set of new schemes for improving Internet content deliv-
ery. In this work, we systematically explore how to best utilize
HTTP/2 to optimize the Internet streaming delivery to mobile de-
vices. For this purpose, we have designed DASH2M, Dynamic and
Adaptive Streaming over HTTP/2. DASH2M deliberately consid-
ers the network fluctuations and the resource consumption on the
mobile devices to optimize the user’s streaming experience. To
evaluate DASH2M, we have implemented a prototype, and exper-
iments have been conducted in a controlled local LAN environ-
ment. The experimental results show that DASH2M outperforms
prior strategies by greatly enhancing the user’s experience while
preserving the energy consumption on the mobile device.

With HTTP/2 playing an increasingly critical role in HTTP stream-
ing, the server-initiated push is a promising technique to effectively
improve the streaming experience. While some previous studies
have suggested continuous push and shorter segment duration for
live streaming, we plan to investigate their effectiveness in prac-
tice. A designated short segment duration imposes a small playback
buffer to a live stream, which is vulnerable to network fluctuations
in Internet. In the future, we expect to practically improve the live
streaming experience even with a complicated network conditions.
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