
Reducing Display Power Consumption for Real-time

Video Calls on Mobile Devices

Mengbai Xiao∗, Yao Liu†, Lei Guo‡, and Songqing Chen∗

∗Department of Computer Science, George Mason University
†Department of Computer Science, SUNY Binghamton

‡Department of Computer Science and Engineering, Ohio State University

Email: ∗{mxiao3, sqchen}@gmu.edu, †yaoliu@cs.binghamton.edu, ‡lguo@cse.ohio-state.edu

Abstract—The display subsystem of a mobile device usually
consumes 38%-68% [1] of the total battery power in video
streaming. Therefore, a few schemes have been designed to reduce
the display power consumption. The basic idea is to dim the
backlight level while properly compensating the pixel luminance
to maintain image fidelity. The luminance compensation and
proper backlight level calculation are computation intensive and
demand per-frame luminance information. For these reasons,
existing schemes only work for video-on-demand where each
frame (and thus the luminance information) is available in
advance. In addition, they demand additional computing resource
support. Otherwise, if the computation is conducted on the mobile
device, the power consumption due to such computation can easily
offset the power savings from dimming the backlight.

In this work, we set to investigate power saving for real-time
video calls on mobile devices. Different from video-on-demand,
real-time video calls are highly delay sensitive and the frame
luminance information is not known in advance. Moreover, video
calls often involve multiple streaming sources from multiple (≥2)
participants, making it more difficult. Because there are few
background changes and the frame rate is usually small in video
calls, we design a Greedy Display Power saving scheme, called
LCD-GDP, which utilizes the commonly available GPU on mobile
devices without demanding additional support. Our design is
implemented on WebRTC, a popular real-time web browser based
video call standard. Experiments show that our scheme can save
up to 33% power consumption in video calls without affecting
the video call quality.

Keywords—backlight scaling; power saving; mobile; video con-
ferencing

I. INTRODUCTION

With the ever-improving network and mobility support,
recently, real-time communication software, being standalone
or combined with social media, have found their way on
mobile devices. Being able to support video calls while entirely
free or at least cheaper than the traditional voice communi-
cations, these software, such as Skype [2], QQ [3], Apple’s
Facetime [4], and Google WebRTC [5], are quickly gaining
popularity among common mobile users.

However, the limited battery power supply remains the
Achilles’ heel of mobile devices while real-time video commu-
nications are very power-hungry. Compared to video stream-
ing, real-time video calls are more demanding. In real-time
video communication, such as video conferencing, video con-
tents are generated on the fly from multiple sources. Even for
one-to-one video call, frames from two sources are generated

and delivered, which is different from the one-way video-
on-demand streaming. Thus, efficiently reducing the power
consumption for video calls on mobile devices is imperative.

Since the display subsystem on a mobile device often
consumes about 38% to 68% of the total energy during video
streaming [1], a few schemes have been designed to reduce
the power consumption of the display. For a Liquid-Crystal
Displays (LCD) display, the dominant power consumption unit
is the display backlight. Thus to reduce the power consump-
tion, it is desirable to dim the backlight as much as possible
while enhancing the luminance of the pixels to compensate the
quality degradation due to backlight dimming. In this way, the
modified images on the screen can maintain image fidelity to
human eyes. Such a technique is called backlight scaling.

Backlight scaling often consists of three stages, i.e., 1)
the histogram generation stage, 2) the backlight levels deter-
mination stage, 3) the pixel luminance compensation stage.
The first stage and the last stage are both computation inten-
sive due to per-pixel manipulation. Therefore, some previous
design either ignore the luminance compensation [6], [7],
leading to significant quality degradation and unsatisfactory
user experience, or demand additional computing resources
for compensation [8], [9], making the scheme impractical for
mobile devices. In the second stage, some previous research
applies the dynamic programming to find the globally optimal
backlight levels without violating the hardware and user ex-
perience constraints [6], [7]. These schemes require that the
video frames be available in advance. However, for real-time
video calls, this is impossible because the video content is
generated on the fly. Furthermore, being highly sensitive to
delay, real-time video calls cannot tolerate the delay that may
be caused by dynamic programming. In addition, since video
calls often involve multiple participants and need to receive
and display data from multiple sources simultaneously, the
backlight scaling technique that works on a single video stream
c a n n o t b e d ir e c tly u se d f o r v id e o c a lls.

In this paper, we set to explore display power saving
for video calls on mobile devices. Since there are often few
background changes and the frame rate is usually small in
practical video calls, we propose a Greedy Display Power
saving scheme, called LCD-GDP. Our greedy algorithm must
conform to the same set of constraints as the dynamic pro-
gramming approach used for video streaming. The first is
that the backlight variations between neighboring frames must
be limited. Otherwise users will experience the flickering
effect [10]. The second is that the backlight should not be

978-1-4673-8009-6/15/$31.00 ©2015 IEEE 285 Symposium on Low Power Electronics and Design

scaled down too much to cause image distortion. And the third
is that the backlight cannot be adjusted too frequently because
the hardware needs some time to respond [11].

To avoid processing the same frame repeatedly, in LCD-
GDP, first, we migrate the per-frame pixel luminance histogram
generation to the sender side for video calls. We embed the
luminance information inside each frame without having to
build an additional channel. Multiple pieces of this information
are put in the frame to account for possible loss during
the video encoding/decoding and the network transmission.
Second, since GPU is commonly equipped on mobile devices,
we take advantage of GPU to offload some tasks from the
CPU. To render the received frames in a timely manner, we
use the OpenGL ES 2.0 shaders to perform the pixel luminance
enhancement. Moreover, the power saved at the display will
not be offset by using the GPU since GPU is already used
in the video conferencing for composing frames together and
then rendering them.

To evaluate the performance of our design, we implement
LCD-GDP in WebRTC and run experiments on a tablet and
a smartphone. Experimental results show that by using the
LCD-GDP, up to 33.2% power consumption can be saved on
average. Our evaluations of the video call quality based on
the frames per second received, the latency, and image fidelity
using PSNR (Peak-Signal-to-Noise Ratio) and SSIM (Structure
SIMilarity) also show that LCD-GDP introduces negligible
impact on the received video call quality.

This remainder of the paper is organized as follows. We
describe some background information for both backlight
scaling and WebRTC in Section II. We present our design of
LCD-GDP in Section III and the implementation details in
Section IV. Evaluation results are discussed in Section V and
we conclude our work in Section VI.

II. BACKGROUND AND RELATED WORK

A. Backlight Scaling

A visible image on a LCD display is produced by both
backlight and the LCD panel which stores pixel color infor-
mation. The perceptual luminance is actually the backlight
intensity compensated by the pixels. Backlight scaling is a
technique that exploits this characteristic. Figure 1 sketches
the high-level idea. The power consumption of displaying an
image can be reduced via dimming the backlight. If nothing
else is done, it will lead to a darker version of this image. This
distortion can be compensated by concurrently increasing the
luminance component of each pixel in this image [8], [12]–
[14]. And increasing the pixel luminance does not increase the
power consumption of the display.

However, directly applying backlight scaling to video play-
back faces several challenges. Both extracting and enhancing
the pixel’s luminance component frame by frame demand
processing a mass of data, and is computation intensive. For
this reason, deploying these tasks during the playback on the
same CPU [12], [14] is not practical because of two reasons.
First, the CPU may not have enough time to perform these
computation intensive tasks without degrading the video qual-
ity (e.g., frames per second) of the video playback. Second,
the achieved power saving by dimming the backlight can be

Fig. 1: Backlight Scaling on LCD screen

offset by the power consumption due to these extra CPU
operations. Hsiu et al. and Lin et al. [6], [7] proposed to skip
the pixel compensation stage and use a critical backlight level
for each frame to avoid severe image distortion. Ruggiero et
al. suggested to offload the luminance adjustment tasks to the
hardware image processing unit (IPU) integrated in Freescale’s
multimedia application processor [15]. It exploits in a smart
and efficient way to implement a hardware assisted image
compensation. Pasricha et al. [8] and Cheng et al. [9] suggested
to compute the backlight scaling data on a proxy server and
substitute the original video with a luminance-adjusted version.
In short, existing schemes (1) only target video-on-demand
where the video frame information is available in advance so
that computation can be done before the playback, and (2)
demand additional infrastructure support for compensation or
do not consider quality degradation due to backlight dimming.
So far, no scheme has been considered for real-time video
calls.

Compared to video-on-demand, real-time video calls are
highly delay-sensitive and frames are generated on the fly.
Furthermore, video calls often involve multiple participants,
and thus multiple frames from different sources need to be
combined in real-time, leaving little computing power for other
tasks, such as pixel luminance compensation.

B. Video calls and WebRTC

Video calls/conferencing are gaining increasing popularity.
On mobile devices, many applications, such as Skype [2],
QQ [3], and Facetime [4], all support video calls/conferencing.
The communication protocol of these applications is propri-
etary to commercial companies, which precludes the commu-
nication between different applications. The increasing cate-
gories of mobile devices, such as smartphones, tablets and
emerging wearable devices, make the situation even more
complicated. To solve this fragmentation problem in the
real-time multimedia communication and also to provide a
cross-platform solution, Web Real-Time Communication (We-
bRTC) [16] is proposed to enable video communications via
web browsers and standardized by the W3C and IETF. Nowa-
days, mainstream browsers, e.g., Chrome, Firefox, Opera, all
have integrated the WebRTC. The WebRTC component [5]
implemented in Chrome provides Javascript-style APIs. This

luminance−compensated

Receiver Device

Capturer

Network

decoder

YUV

Display

RGBA

Scanning

Sender Device

encoder

Module

YUV

Adjustment

Module

Rendering

Module

luminance

information

adjusted

backlights

Fig. 2: LCD-GDP system architecture and major
components.

component can also be linked to the native mobile apps as
an external library. WebRTC is now widely used by mobile
users. However, given its video streaming nature, the power
consumption of video communication is high, which has
slowed down its pervasion.

III. SYSTEM DESIGN

A. System Components

Backlight scaling generally involves three steps for 1)
generating the luminance histogram, 2) determining the proper
backlight levels and 3) compensating the pixel luminance.
In our system, we organize them into the following three
modules: the Scanning module, the Adjustment module, and
the Rendering module. Next we present our new approaches
in these three modules, respectively. Figure 2 illustrates the
organization and interaction of these three modules.

Sender-Side Scanning and Piggybacking: The Scanning
module extracts the per-frame pixel luminance information.
In real-time communication (RTC), the frames are generated
by the video capturer, which is usually a physical camera.
It is impossible to access the whole video content in ad-
vance. So the scanning module is necessary to generate the
luminance histogram for later backlight level determination
and luminance compensation. Other than video on demand
(VOD), RTC sessions involve multiple N ≥ 2 participants,
and the rendered image is composed by all received frames
(including the frame captured by the receiver itself). While it
is natural to conduct the scanning after receiving the image
at the receiver side, in our design, the scanning module is
installed at the sender side. In this way, each generated frame
will only need to be scanned once. (Otherwise, every receiver
needs to conduct scanning for the same image individually.)
However, this brings another problem: how to transmit this

luminance information to the receivers if scanning is done at
the sender side. Building another channel is possible, but it
introduces additional overhead and extra efforts must be made
to synchronize the frames and the luminance information.
Either of them may not arrive at the receiver on time.

To this end, we choose to encode this information with the
frame data for more efficient luminance information transmis-
sion. The bottom corners are the best candidates for encoding
this information. This position is either covered by frames
from other participants, or negligible when the frame is resized
to a smaller size. Since the encoded luminance information
may get lost in the video encoding process or during network
transmission, we propose to put this information at the multiple
positions that are known in advance by both ends. The receiver
extracts the information and uses the maximum value among
the candidates. It then passes the value to the Adjustment
module for backlight scaling.

Greedy Luminance Adjustment: The Adjustment module
is located at the receiver side. This module aims to find the
appropriate backlight levels from the luminance information.
In VOD, global luminance information is required to prevent
the flickering effects, which is caused by frequently scaling
the backlight level with great variation–VOD usually involves
numerous scene changes. But real-time video communication
is highly delay-sensitive, buffering a certain amount of frames
for the purpose of waiting for enough luminance information
to be accumulated (and thus calculate the optimal backlight
levels) is not practical. In our design, we propose to use a
greedy algorithm in the determination stage, as we discuss
in the next subsection. This algorithm determines the current
backlight level only based on the latest information from
the last frame. In this way, little latency is introduced into
the system. After this, the new backlight levels are sent to
the Rendering module for pixel compensation and backlight
scaling.

GPU-assisted Rendering: The Rendering module strengthens
the original rendering function by adding pixel luminance
compensation and backlight scaling. In our design, instead
of using the CPU, we choose the commonly available GPU
on today’s mobile devices to enhance the pixel luminance.
For video calls, typically the GPUs are already enabled for
resizing, composing the received frames and performing RGB-
YUV conversion. Thus, little power consumption overhead can
be expected by the adding the pixel compensation task. Lu-
minance compensated frames rendered with scaled backlight
level allows users to see frames with no distortion from the
original version.

B. Backlight Determination Algorithms

We next discuss the backlight determination algorithm used
by the Adjustment module.

Ideally, to maximize power saving without affecting user
experience, the algorithm should conform to the following
constraints:

b ≥
Y max

255
(1)

b ∈ [b′ × (1−∆b), b′ × (1 + ∆b)] (2)

Algorithm 1 The Greedy Algorithm

1: ⊲ On input (t, Y max
t , b′, t′), where b′ is the last adjusted

backlight level and the t′ is the corresponding frame index,
we generate the bt, the backlight level of the tth frame.

2:

3: if t = 1 then
4: b′ ← Y max

t /255
5: t′ ← t
6: bt ← b′ return bt
7: end if
8:

9: if t− t′ < lmin then return b′

10: end if
11:

12: bt ← Y max
t

/255
13: if bt < b′ × (1−∆b) then
14: b′ ← b′ × (1−∆b)
15: else if bt > b′ × (1 + ∆b) then
16: b′ ← b′ + (1 +∆b)
17: else
18: b′ ← bt
19: end if
20:

21: bt ← b′

22: t′ ← t
23: return bt

t ≥ t′ + lmin (3)

Equation 1 represents the distortion constraint. Y max
t rep-

resents the maximum pixel luminance of the frame. Since pixel
luminance cannot be scaled to be bigger than its maximum
(i.e., 255), the backlight level b must be high enough. Other-
wise, distortion will occur. The user experience constraint is
quantified as the relationship between b and the most recent
backlight level, b′, in Equation 2. To prevent the flickering
effects, the backlight level can only be scaled up or down
by at most ∆b for continuous frames. Equation 3 represents
the hardware constraint. Since it takes time for the display
hardware to apply the new backlight level, backlight levels
must stay the same for at least lmin frames.

While a dynamic programming algorithm can maximize
power savings while satisfying all constraints, it requires all
frames be available in advance. In real-time video communi-
cation, however, frames are generated on the fly, and buffering
frames would inevitably increase the user-perceived delay.
Given the stringent timing requirement in video calls, it is
not possible to satisfy all three constraints. Therefore, we
propose a greedy algorithm that attempts to relax the distortion
constraint in Equation 1. We expect our scheme will not lead
to significant distortion based on the intuition that few scene
changes are likely to be found during the video call sessions.
We evaluate if our conjecture holds in practice via experiments
in Section V.

The pseudo code of our greedy algorithm is shown in
Algorithm 1. The backlight level of the tth frame, bt, only
depends on the most recent backlight level b′, its index t′

and the maximum luminance of current frame Y max
t . In the

adjustment, bt still conforms to the constraints represented in

Equations 2 and 3. Distortion may occur if there is significant
change in Y max

t and bt can not be adjusted to satisfy Equa-
tion 1. Assuming that there is no frequent scene changes in
the video calls, we expect such distortion is rare and will be
corrected gradually in next adjustment operations.

IV. IMPLEMENTATION

We integrated our LCD-GDP scheme into the WebRTC
open source project [5], which is the WebRTC component
of the Chrome browser implemented by Google. Then this
component can be linked to the WebRTC app, an Android
app, and then we use this app to do the evaluation.

The scanning module is implemented in C++ and is hooked
after where the captured frames are generated. In practice,
the camera on Android mobile devices produces frames in
YUV format, and the scanning module directly extracts the
Y component of each pixel in the frame, which represents the
luminance. Then we select the maximum value of Y among
all pixels in a frame and encode it into the Y data panel.
Because frame information may be lost due to packet loss
during network transmission or due to video compression, we
encode the maximum luminance value in multiple positions in
the Y data panel. After that, the updated frames are sent to
the encoder. There is one scanning module in every client that
participates in the video call.

The adjustment and the rendering modules are both im-
plemented at the JAVA layer. One adjustment module and one
rendering module are required for each video stream, including
the stream produced by the host itself, for processing and
rendering frames of this stream. For example, if a video call in-
volves two devices, there will be two adjustment modules and
two rendering modules on each device to process two streams.
For each stream, these two modules run on independent threads
and are connected by a YUV frame queue.

The adjustment module receives the YUV frames from the
decoder and reads the maximum frame luminance information
that is encoded in each frame. Since this information is
encoded in multiple places and some may be corrupted or
lost, we conservatively select the greatest value among all
the candidates. We use this maximum luminance informa-
tion to determine the future backlight level based on our
greedy algorithm when rendering this frame. After that, the
frame is en-queued to be processed by the rendering module,
and a three-tuple (stream-id, frame index, adjusted
backlight level) is stored into a global hash table.

Given that a device has to render at least two streams (one
from itself and the other from the other end of the call) in a
video call, LCD-GDP collects the backlight level candidates
by using the index of the next frame combined with its stream-
id to look up the hash table. The candidate with the greatest
value is selected, and backlight scaling and pixel compensation
are performed based on the selected value. Video call frames
are rendered by invoking the rendering modules sequentially. It
fetches the YUV frame from the queue, and uses the OpenGL
ES Shaders to do resizing, luminance compensation and YUV
to RGB conversation. Eventually the framebuffer generated by
the shaders is flushed to the screen.

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

P
o
w

e
r

(W
)

Time (s)

original
greedy-bright
greedy-dusky

greedy-dark

Fig. 3: Power consumption of the Samsung tablet during
real-time video communication under different scenes.

V. EVALUATION

To evaluate the performance of LCD-GDP, we conducted
experiments with two devices: one Nexus 4 smartphone and
one Samsung Galaxy 10.1-inch tablet. We set up video calls
between the two devices in the same LAN in order to minimize
the impact of the network and we measure the real power con-
sumption using the Monsoon power monitor [17]. In addition,
we examine if video call quality has been affected by our
LCD-GDP scheme.

A. Power Consumption

We measure the power consumption under scenes with
different levels of brightness. These scenes are tagged with
bright, dusky and dark. Under the bright scene, the maximum
pixel luminance of frames is close to 255, which leaves our
LCD-GDP scheme very little space for backlight scaling.
Under the dusky and dark scenes, with smaller maximum
luminance value (about 190 and 107, respectively), we can
save more power by dimming the backlight and maintain the
observed brightness via luminance compensation. We com-
pare the power consumption of our LCD-GDP scheme under
different scenes with the power consumption of the original
version of WebRTC app. The results are shown in Figure 3.
Since the power consumption of the original WebRTC app
under different scenes is almost the same, we only plot the
result under bright environment in this figure, which is 6.935
watts on average. This value is considered as the baseline.
Under the same bright scene, the power consumption of our
LCD-GDP is 7.160 watts, slightly higher than the baseline.
This is because extra modules are integrated into the system,
consuming more power, while the backlight is never dimmed
throughout the conversation. In the dusky and dark scene
experiments, the backlight intensity is gradually dimmed by
the greedy algorithm, reducing the power consumption shown
as the beginning descendent gradient. As a result, only 6.235
watts and 4.783 watts power is consumed on average, saving
12.92% and 33.20% power, respectively.

B. Video Quality

We next examine the quality of video calls made under
our LCD-GDP scheme. We focus on four metrics: frames per

TABLE I: FPS of video stream originating from Nexus 4
smartphone to Samsung tablet.

Input Sent Output

E δ E δ E δ

Bright scenario

Original App 23.78 1.66 19.09 2.81 13.91 4.41

LCD-GDP 23.99 1.18 18.79 3.06 13.60 3.17

Dark scenario

Original App 8.02 1.37 8.00 0.42 4.85 0.72

LCD-GDP 7.85 0.48 8.00 0.18 4.96 0.53

second (FPS), peak signal to noise ratio (PSNR), structural
similarity (SSIM), and user-perceived video call latency. We
compare our scheme with the original WebRTC app.

Frame Rate. To measure the number of frames that are
captured, encoded at the sender side and decoded and rendered
at the receiver side, we use the statistics reported by the
WebRTC app directly. We find that at the sender side, the
number of frames that are encoded varies significantly if there
are moving objects. The frame rate reaches the highest value
when the frame content is a static scene. Since our scheme
is agnostic to frame content, we only consider static scene
in our experiments. This allows us to evaluate our scheme
during video call with high FPS. We expect if our scheme
will not impact the video call with high FPS, it will not
impact the calls with lower FPS either. We set the resolution
of captured video to 640 × 480 and measured the FPS under
scenes with different brightness. Note that in the WebRTC app
where we incorporated our LCD-GDP scheme, the frame rate
of generation is limited to 30 FPS and at most 15 frames are
rendered per second. In each experiment, the video call lasted
at least 5 minutes. During the video call, the FPS metric is
recorded every second. Then we report the statistical results of
the FPS in different stages for the video streaming originating
from the Nexus smartphone to the Samsung tablet.

Table I shows the frame rate of the video stream originated
from the Nexus 4 smartphone in different stages. The Input
column indicates the rate of frames captured at the camera.
The Sent column indicates the frame rate of the encoded video
stream. This stream is sent over the network and decoded at
the receiver side. The final rendered frame rate is shown in the
Output column. E stands for the expectation of the result and
δ is the corresponding standard deviation. The table shows
that FPS is always lower in the dark scenario even in the
original scheme. We find this frame rate degradation is due
to the specific implementation of the original WebRTC app.
Comparing these two extreme cases in the lowest FPS and the
highest FPS, we find there is no degradation of video quality
in terms of FPS.

Image Fidelity. Fidelity loss could occur in LCD-GDP for two
reasons: (i) the maximum pixel luminance of frames increases
abruptly, causing the constraint shown in Equation 1 to be
violated; and (ii) the luminance information piggybacked in
the delivered frames is lost due to video compression or net-
work transmission. To measure video quality, we calculate the
Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity
(SSIM) between the receiver-observed video stream and the
original stream captured at the sender. To align the frames,

TABLE II: PSNR (dB) and SSIM between the rendered
video stream and the original captured frame.

Original WebRTC App LCD-GDP

E δ E δ

Bright Scene

PSNR 41.89 4.85 41.79 4.85

SSIM 0.98 0.01 0.98 0.01

Dusky Scene

PSNR 41.79 4.85 41.79 4.85

SSIM 0.98 0.01 0.98 0.01

Dark Scene

PSNR 44.86 6.88 41.63 9.78

SSIM 0.97 0.01 0.97 0.01

we insert a black frame into the streaming every 10 frames as
the anchor. Then we record all the frames on both sides. We
only compare the frames between two anchor frames if there
are exactly 10 frames recorded on both sides. The results are
shown in the Table II.

Using the original WebRTC app under Dusky Scene, for
example, the PSNR and SSIM between the rendered frame and
the original captured frame is 41.79 and 0.98, respectively. The
difference is caused by video compression as expected. We use
this value as baseline and see if using the greedy algorithm
causes more fidelity loss. The result show that the PSNR and
SSIM of LCD-GDP under the same scene has the same value
of 41.79 and 0.98, indicating video quality is not affected.
Under the Bright Scene and the Dark Scene, the SSIM values
are always the same. The PSNR values are slightly decreased
when using LCD-GDP. However, the PSNR values are still
above 40 dB, indicating there is very little distortion.

User-perceived Video Latency. We also measure the user-
perceived video call delay. To minimize the impact of wide
area network dynamics, we conduct the experiments in the
same local area network (LAN). To measure the end-to-end
delay, we place the camera on the mobile device in front
of a stop watch and compare the timestamps rendered on
two devices using the method proposed by Yu et al. [18].
In the original WebRTC app, we find the average latency is
261 milliseconds during the video call. When the LCD-GDP
scheme is applied, the average latency is increased to 302
milliseconds, indicating only about 40 milliseconds delay are
introduced due to the additional processing.

VI. CONCLUSION

Video communications are power-hungry. Real-time video
calls add additional challenges because real-time video calls
are highly delay sensitive and no video frames are available
in advance. In this paper, we explore the possibility of using
backlight scaling technique to save the display power con-
sumption during real-time video calls. We have designed and
implemented a greedy display power saving scheme, LCD-
GDP. In LCD-GDP, the luminance scanning and generation
is migrated to the sender side during video capturing, and
the information is piggybacked to the receiver. Furthermore,
we propose a greedy algorithm that is practical for backlight
level determination in real-time video calls. Lastly, LCD-
GDP leverages the GPU instead of the CPU to conduct real-

time luminance compensation. We build LCD-GDP based on
the WebRTC, and our evaluations on a smartphone and a
tablet show that LCD-GDP can save up to 33% of power
consumption without affecting the video call quality.

ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous
referees. The work is partially supported by NSF under grant
CNS-1117300.

REFERENCES

[1] A. Carroll and G. Heiser, “An analysis of power consumption in a smart-
phone,” in Proceedings of the 2010 USENIX Conference on USENIX

Annual Technical Conference, ser. USENIXATC’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 21–21.

[2] “Skype,” http://www.skype.com/en/.

[3] “Tencent QQ,” http://www.qq.com/.

[4] “Apple Facetime,” https://www.apple.com/mac/facetime/.

[5] “WebRTC Project,” http://www.webrtc.org/.

[6] P.-C. Hsiu, C.-H. Lin, and C.-K. Hsieh, “Dynamic backlight scaling
optimization for mobile streaming applications,” in Low Power Elec-

tronics and Design (ISLPED) 2011 International Symposium on, Aug
2011, pp. 309–314.

[7] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh, “Dynamic backlight scaling
optimization: A cloud-based energy-saving service for mobile streaming
applications,” IEEE Trans. Computers, vol. 63, no. 2, pp. 335–348,
2014.

[8] S. Pasricha, S. Mohapatra, M. Luthra, N. Dutt, and N. Venkatasubra-
manian, “Reducing backlight power consumption for streaming video
applications on mobile handheld devices,” in In Proc. First Workshop

Embedded Systems for Real-Time Multimedia, 2003, pp. 11–17.

[9] L. Cheng, S. Mohapatra, M. El Zarki, N. Dutt, and N. Venkatasubra-
manian, “Quality-based backlight optimization for video playback on
handheld devices,” Adv. MultiMedia, vol. 2007, no. 1, pp. 4–4, Jan.
2007.

[10] A. Iranli, W. Lee, and M. Pedram, “Hvs-aware dynamic backlight
scaling in tft-lcds,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 14, no. 10, pp. 1103–1116, 2006.

[11] S. Pasricha, M. Luthra, S. Mohapatra, N. Dutt, and N. Venkatasubrama-
nian, “Dynamic backlight adaptation for low-power handheld devices,”
IEEE design & test of computers, no. 5, pp. 398–405, 2004.

[12] W. Cheng, Y. Hou, and M. Pedram, “Power minimization in a backlit
tft-lcd display by concurrent brightness and contrast scaling,” in Design

Automation Conference, 2004.

[13] N. Chang, I. Choi, and H. Shim, “Dls: dynamic backlight luminance
scaling of liquid crystal display.” IEEE Trans. VLSI Syst., vol. 12, no. 8,
pp. 837–846, 2004.

[14] I. Choi, H. Shim, and N. Chang, “Low-power color tft lcd display for
hand-held embedded systems,” in Proceedings of the 2002 International

Symposium on Low Power Electronics and Design, ser. ISLPED ’02.
New York, NY, USA: ACM, 2002, pp. 112–117.

[15] M. Ruggiero, A. Bartolini, and L. Benini, “Dbs4video: Dynamic lumi-
nance backlight scaling based on multi-histogram frame characterization
for video streaming application,” in Proceedings of the 8th ACM

International Conference on Embedded Software, ser. EMSOFT ’08.
New York, NY, USA: ACM, 2008, pp. 109–118.

[16] “WebRTC Standard,” http://w3c.github.io/webrtc-pc/.

[17] “Monsoon Power Monitor,” http://www.msoon.com/LabEquipment/
PowerMonitor/.

[18] C. Yu, Y. Xu, B. Liu, and Y. Liu, ““can you see me now?” a measure-
ment study of mobile video calls,” in INFOCOM, 2014 Proceedings

IEEE, April 2014, pp. 1456–1464.

