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Abstract—Nested queries are commonly used to express com-
plex use-cases by connecting the output of a subquery as an input
to the outer query block. However, their execution is highly time-
consuming. Researchers have proposed various algorithms and
techniques that unnest subqueries to improve performance. Since
this is a customized approach that needs high algorithmic and
engineering efforts, it is largely not an open feature in most
existing database systems.

Our approach is general-purpose and GPU-acceleration based,
aiming for high performance at a minimum development cost.
We look into the major differences between nested and unnested
query structures to identify their merits and limits for GPU
processing. Furthermore, we focus on the nested approach that
is algorithmically simple and rich in parallels, in relatively
low space complexity, and generic in program structure. We
create a new code generation framework that best fits GPU
for the nested method. We also make several critical system
optimizations including massive parallel scanning with indexing,
effective vectorization to optimize join operations, exploiting
cache locality for loops and efficient GPU memory management.
We have implemented the proposed solutions in NestGPU, a
GPU-based column-store database system that is GPU device
independent. We have extensively evaluated and tested the system
to show the effectiveness of our proposed methods.

I. INTRODUCTION

Nested queries are an important part of SQL for users
to express complex use-cases by connecting the output of
a subquery (the inner query block) as an input to the outer
query block. Among them, a nested query is correlated if its
subquery refers attributes of the outer query block [1]. An
efficient way to execute a correlated subquery is to unnest
it into an equivalent flat query. This unnested method has
been recognized as an active research field of databases for
about 40 years [2], [3], [4], [5], [6], [7], [4], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17]. However, due to its
customized approach, existing database systems cannot unnest
arbitrary correlated subqueries by following some general rules
and require high engineering efforts to implement unnesting
strategies into a database engine.

For an example of such a query presented in Query 1,
a conventional method [2] is to replace the subquery with
derived tables. By replacing the table scans that contain the
correlated columns, i.e., R.col1 = S.col1, in the nested
loop with a JOIN in conjunction with a GROUP BY, the
correlated nested query can be unnested into an unnested one
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SELECT R.col1, R.col2
FROM R
WHERE R.col2 = (
SELECT min(S.col2)
FROM S
WHERE R.col1 = S.col1);

Query 1: An example of correlated nested query

SELECT R.col1, R.col2
FROM R, (
SELECT min(S.col2) as t1_min_col2,

S.col1 as t1_col1
FROM S
GROUP BY S.col1) T1

WHERE
R.col1 = T1.t1_col1 AND
R.col2 = T1.t1_min_col2;

Query 2: The unnested query of Query 1

as shown in Query 2. However, if the correlated operator in
the subquery is >, <, ! =, or others, e.g., the condition is
changed from R.col1 = S.col1 to R.col1 > S.col1
in the WHERE clause of the nested loop, this query cannot
be unnested without extending the current SQL standard and
introducing new operators [16], [17].

A more general way to execute a subquery is the nested
loop approach that is the final option of most databases
when a given nested query cannot be unnested. This nested
method directly executes a correlated subquery by iterating all
tuples of the correlated columns from the outer query block
and executing the subquery as many times as the number
of the outer-loop tuples [1]. The method is general-purpose
since it is not affected by the type of correlated operators
or subquery structures. However, it has a high computational
complexity as the correlated columns in the subquery have to
be accessed multiple times. In Query 1, the nested method
has O(N2) computational complexity, where N is the size
of correlated columns (assuming both R.col1 and S.col1
have N tuples). In contrast, the unnested approach in Query
2 has lower computational complexity as it only accesses
the correlated columns in the subquery once: when using a
GROUP BY and a JOIN to execute the subquery, the unnested
method has O(N ) computational complexity in both JOIN
and GROUP BY (assuming the hash join is used). Such a
significant complexity gap between the two methods and
the optimization opportunities for flat queries have motivated



many research and development activities for the unnested
method, even though it is not as general as the nested one
and consumes more memory spaces due to the derived tables.

In response to the ending of the Moore’s Law, GPU has
been widely used to accelerate query processing [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28]. GPU can
accelerate performance over CPU due to its massively parallel
architecture and high bandwidth memory. However, nested
queries are yet in the scope of existing GPU-based query
processing systems due to software complexity, including
GPUDB [21], OmniSci [29], and Kinetica [30]. An input query
is by default considered as a flat query and unnesting should
be done before the execution.

In this paper, we aim to provide a generic method for
nested query processing on GPU without unnesting queries.
The rationale of our approach is as follows. The high com-
putational complexity of the nested method can be offset by
optimized parallel processing on GPU; and its low memory
usage can sustain the nested method in the limited GPU
memory capacity. This makes the nested method for executing
correlated subqueries to become feasible on GPU. However,
implementing such a method on GPU is challenging. On CPU,
the nested method requires little engineering efforts since
recursively executing a subquery in a predicate of an operator
(e.g., selection and join) is feasible and efficient, naturally
following the same way of processing flat queries. In contrast,
implementing a recursive method on GPU is complicated
and inefficient. On GPU, the relational operators are usually
implemented as GPU kernels [29], [30], [21], [20], [31], [23].
Recursively calling GPU kernels with dynamic parallelism
[32] that is the only way for recursive kernel execution on GPU
not only incurs significant overhead at runtime [33], [34], [35],
[36], but also complicates the system design, where different
GPU kernels must be generated in advance for different
subqueries or the execution control flow, i.e., analyzing the
whole query plan tree, has to be offloaded to GPU. To address
this structural issue, we propose a code generation framework
for the nested query processing on GPU. Our method generates
code to iteratively evaluate a subquery for all correlated tuples
before evaluating the predicate containing the subquery, so that
we can realize the subquery execution by manipulating pre-
implemented and highly optimized GPU kernels in an iterative
manner.

In order to execute correlated subqueries efficiently, we
design and implement a set of optimizations on GPU: (1)
GPU memory management. In order to avoid frequent GPU
memory allocation and deallocation in relational operators
running on GPU, we design and implement a memory pool
mechanism and differentiate multiple types of memory re-
quirements inside GPU kernels. (2) Indexing. Despite the
high throughput of table scan on GPU, building an index and
narrowing the scan range can significantly speed up the table
scan that are repeatedly invoked in the iteration of the nested
method. It is particularly effective when the inner table is
large. (3) Invariant component extraction. During the code
generation, we extract the invariant components inside the

nested query. At runtime we execute them only once to avoid
redundant computation. (4) Vectorization. Inside the nested
query block, intermediate data might be too small to fully take
advantage of the parallelism of GPU. We implement the query
vectorization [37] on GPU by fusing GPU kernels to vectorize
operators across multiple nested iterations. This improves GPU
occupancy effectively. (5) Caching for reused outer loop
tuples. With this effort, a large portion of computation can be
saved if the correlated column contains duplicate values.

With these optimizations on GPU, the nested method can
effectively approach the unnested method in the execution
time. However, the gap between the computational complexity
still deteriorates the performance of the nested method if the
correlated tables become large enough. Thus, we build a cost
model to predict the execution time of the nested method.
This model can provide a precise estimation of the execution
time of the nested method for the query optimizer, so that the
optimizer can switch to the unnested method when the nested
method is performance unsuitable.

To integrate all these efforts together, we have developed
a subquery processing system, called NestGPU. In short,
GPU accelerated nested query processing in NestGPU has the
following unique merits. First, certain nested queries could
not be algorithmically unnested [16], [17], thus the only
solution on GPU is to use the nested method of NestGPU.
Second, due to the high memory capacity requirement, certain
algorithmically unnested workloads could not complete the
execution on GPU (see Section V). In contrast, they run
well with NestGPU by effectively using the GPU device
memory. Third, our experiments show that execution per-
formance for representative workloads by NestGPU and the
unnested method are very comparable, and in certain cases,
NestGPU outperforms the unnested one. Finally and most
importantly, NestGPU is general-purpose without complex
unnesting efforts, which strongly motivates us to design and
implement the nested method on GPU for this critical reason
in practice. Our contributions are summarized as follows.

• We look into the major structural differences between the
nested and unnested methods, by comparing their merits
and limits on GPU. Our study gives insights into the
reasons why we are able to deliver high performance in
GPU accelerated processing for the nested method.

• We create a new code generation framework and develop
a set of GPU optimizations for effective implementations
of the nested method. We also develop a cost model to
guide subquery processing by selecting the most effective
execution path, which ensures to achieve optimal perfor-
mance for each subquery processing.

• We design and implement a subquery processing system,
called NestGPU. Having extensively evaluated and tested
the system, we show the effectiveness of the system
and accuracy of the cost model. The unique value of
NestGPU is its simple and general-purpose structure
without complex unnesting efforts, which we believe is a
fundamental contribution for subquery processing.



II. BACKGROUND

A. Nested Queries

In SQL, a query can be nested in the SELECT, FROM,
WHERE or HAVING clause along with an expression operator,
e.g., <, >, =, and others. It can also be part of an UPDATE
or DELETE statement, or a SQL view. Four nesting types are
generalized to type-A, type-N, type-J and type-JA nesting [2].
For type-A and type-N queries, the nested query block can
be executed once and then results are served to the outer
query block. The execution of these two types of subqueries is
similar to that of flat queries. For type-J and type-JA nesting,
the inner query block contains parameters resolved from a
relation of the outer block. Type-JA nesting further contains
an aggregate function. These two types of nested queries are
named as correlated subqueries. Because correlated subqueries
are most popular and cannot be executed straightforwardly as
type-A and type-N nested queries, they are extensively studied
in existing research of the unnested method. In this work, we
also focus on correlated subqueries.

B. Nested and Unnested Approaches
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Fig. 1: The query-plan trees of Query 1 and Query 2

Although the nested method is in a simple structure, it
executes a correlated subquery in an algorithmically inefficient
way. In principle, the subquery must be re-evaluated for each
tuple of the referenced column from the outer query block.
This leads to high computation complexity. When evaluating
such a subquery, the execution engine usually analyzes the
query plan trees for the outer query block and the inner query
block separately, and uses a syntax like the Subplan of
PostgreSQL to connect them. For the nest subquery in Query
1, the query plan trees are shown in Figure 1 (a), where the
left side represents the nested query block and the right side is
the outer query block. The engine evaluates the subquery for
each tuple of the column R.col1 and accesses the relation
S multiple times.

A common way to reduce the complexity of the nested
method is to unnest the nested loops. By performing JOIN
and GROUP BY operations, the correlated subquery can be
merged into its upper level query block. One can use the
algorithm described in [2] to unnest Query 1 and get the
equivalent Query 2. Query 2 is a flat query and its query
plan tree is shown in Figure 1 (b). In the execution, a derived
table T1 that is the result of grouping S.col1 and then
aggregating on S.col2 is first generated. The final result
is projected by a join on the relation R and the derived table

T1 with the conditions R.col1 = t1_col1 and R.col2
= t1_min_col2. Notice that an unnested query usually
requires larger memory space than that of the unnested one
because of the generated derived table, the size of which
depends on the content of the inner query block.

C. Query Processing on GPU

A general framework of a GPU query-processing engine
includes three major components. The first is a set of pre-
implemented and optimized relational operators, such as Se-
lection, Join, Aggregation, and many others. Each of these
operators is usually dismantled into several GPU kernels
(called as primitives), e.g., scan, scatter, prefix-sum, etc. The
second is a parser to transform the SQL queries into their query
plan trees and apply necessary optimizations. The third is a
code generator to translate the query plan trees into programs
(called as drive programs) with optimizations on both CPU
and GPU. The commonly used operators are highly optimized
on GPU [18], [20], [23], [38]. The memory management is
also a major concern. To avoid unnecessary data movement,
the intermediate tables between operators could be preserved
on GPU device memory. A pipelined design is also used to
overlap GPU computation and data movement [21], [24], [28].

D. Problem Statement

SELECT R.c1 R.c2
FROM R
WHERE R.c2 =

(SELECT min(S.c2)
FROM S
WHERE R.c1 = S.c1);

open () {
R.open();

}

getNext() {
do {

r = R.getNext();
if(r == null) return null;
subqRes = subquery(r.c1);

} until (r.c2 == subqRes);
return r;

}

close() {
R.close();

}

Fig. 2: The nested method on CPU: the pseudo-code to execute
Query 1 with the iterator interface method. The subquery is re-
evaluated every time when a new tuple is retrieved.

Figure 2 shows a standard pseudo-code to execute Query 1
in the nested method on CPU. The subqueries are recursively
evaluated for different correlated values by following the
iterator interface method [39]. As shown in the figure, a
subquery function, i.e., the aggregate operator min in this
case, can be directly called at any level of nested queries,
because the recursive processing is naturally supported on
CPU. Thus, the execution of a correlated subquery on CPU
in the nested method is same to that of a flat query. However,
to implement such a framework on GPU is cumbersome
and inefficient for two reasons. First, as mentioned above, a
common practice of GPU query processing engines is to pre-
implement the relational operators as GPU kernels while to
leave the control flow on CPU. Thus, the execution is in a
push mode, i.e., calling GPU kernels of operators from leaves



to the root of the query plan tree. If implementing the recursive
execution of subqueries on GPU, one has to implement the
control flow completely on GPU, i.e., the traversal of the
query plan tree, and also re-implement GPU operators as GPU
device functions to allow an operator to call another one,
since CPU program invocation from GPU is not allowed. This
will lead to an increasingly large, complex, and inefficient
GPU kernel. Second, dynamic parallelism [32] is the typical
way to support recursive kernel invocation on GPU. However,
this approach causes inferior performance due to the kernel
launch overhead, the under utilization of GPU resources in
sub-kernels, and the divergence branch overhead in upper-level
kernels [33], [34], [35], [36]. More importantly, the maximum
depth of kernel invocation and the total amount of memory
reserved in dynamic parallelism are limited and varied on
different generations of GPU [32], which makes the recursive
implementation on GPU that uses dynamic parallelism not as
general as that on CPU. A new framework rather than the
recursive one for the nested method on GPU is needed.

Even if we have such a framework that can support the
nested method on GPU, we still need to resolve the following
performance issues, due to the nature of repeated evaluations
of the subquery. The first one is the kernel launch issue. The
nested method may incur high kernel launch overhead, because
the kernel launch times grow along with the iterations of the
outer block. The second one is the memory management issue.
The nested method requires more advanced device memory
management. Allocating and deallocating device memory per
operator is usual in unnested methods, but it will lead to
unacceptable memory management overhead in the nested
method, since each operator in a subquery is called as many
times as the number of correlated tuples from the outer block.
The third one is the inadequate parallelism issue. If the data set
to be processed in an operator of a subquery is too small, GPU
occupancy is lowered and the overall performance is degraded.
The issue may not be a big concern in unnested methods on
GPU since the operator in the subquery manipulates the results
of the join on the intermediate relation and the relation of the
outer block. In contrast, in each iteration of the nested method,
the operator in the subquery operates on results of the selection
that uses a single tuple of the outer-loop relation as input and
produces much less output than that of a join.

In summary, the success of GPU-accelerated processing for
correlated subqueries depends on two critical components: (1)
a new code generation framework that best fits GPU for the
nested method; and (2) a set of effective optimization methods
to deliver high performance. With these two components,
we have accomplished our goal of high performance and
minimum development cost in the query processing engine,
which will be presented in the rest of sections.

III. SYSTEM DESIGN

A. Query Plan Trees

NestGPU introduces a new operator SUBQ into the query
plan tree to represent a subquery. When the parser of Nest-
GPU identifies a subquery, it will insert a SUBQ into the

predicate containing the subquery, which will be eventually
substituted with an iteration loop of the execution code. Since
the subquery itself is a complete query block, it will be parsed
into another query plan tree. Meanwhile, because a subquery
may include another subquery, the NestGPU parser will finally
generate a tree-of-trees structure. In our implementation, all
query plan trees except the outermost one are stored into a
list, so that any of them can be located by their indices when
traversing the tree during the code generation. The operator
SUBQ has varying operands, including the subquery index and
the correlated columns. Figure 3 shows an example of a three-
level query plan tree that includes two subqueries. The first
subquery reside in the predicate on the right table of the join
operator at Level 0, and the second one is in the selection
operator at Level 1.

Subqueries: [1, 2, …]The outmost query

JOIN: LEFT.col1 > SUBQ(2, RIGHT.col1, …)

SELECTION: R.col1 = SUBQ(1,   R.col2, …)Level 0

Level 1

Level 2

Fig. 3: A query plan tree with two correlated subqueries

B. Code Generation

By traversing the query plan tree, NestGPU generates a
drive program that will be further compiled and linked to pre-
implemented relational operators. The code generator starts
from the outermost query plan tree, from the leaves to the
root. For any node, i.e., a query operator, in the query-plan
tree having a subquery as an operand of its predicate, the
code generator generates code that evaluates the subquery for
all correlated values passed from the outer loop and setups the
results as a vector. Then the operator containing the subquery
is evaluated with the result vector as the input.

SELECTION: R.col1 = SUBQ(1, R.col2)
LoadToGPU(R.col1);

LoadToGPU(R.col2);
for(int i = 0; i < R.tupleNum; i++) {    

{
// Generate code for subquery#1
…
LoadToGPU(S.col1);
Table t_in = Selection(“=“, S.col1, R.col2[i]);
…
Res[i] = Materialize(resultTable);

}
}

Table t_out = Selection(“=“, R.col1, Res);

The outmost query

Subqueries[1]

SELECTION: S.col1 = R.col2

Fig. 4: Generating code for a subquery in Selection
Selection with a subquery. Figure 4 shows the pseudo

code generated for a selection operator containing a correlated
subquery in the drive program. The regular execution code
of a selection is to load all operands, e.g., a constant “10”



JOIN: LEFT.col1 = SUBQ(2, RIGHT.col1)
LoadToGPU(LEFT.col1);

LoadToGPU(RIGHT.col1);
for(int i = 0; i < RIGHT.tupleNum; i++) {    

{
// Generate code for subquery#2
…
Res[i] = Materialize(resultTable);

}
}

Table t_out = JOIN(“=“, LEFT.col1, Res);

LoadToGPU(LEFT.col1);

LoadToGPU(LEFT.col2);
LoadToGPU(RIGHT.col1);
for(int i = 0; i < LEFT.tupleNum * RIGHT.tupleNum; i++) {    

{
// Generate code for subquery#3
// LEFT.col2[i / LEFT.tupleNum] and RIGHT.col1[i % LEFT.tupleNum] 

are used in current iteration
…
Res[i] = Materialize(resultTable);

}
}

// The value in Res used to join is at left_idx * RIGHT.tupleNum + right_idx
Table t_out = JOIN(“=“, LEFT.col1, Res);

JOIN: LEFT.col1 = SUBQ(3, LEFT.col2, RIGHT.col1)

Fig. 5: Generating code for a subquery in Join

or a column R.col1, into GPU memory first, then to run
GPU kernels over the loaded data to complete the selection
operation, and to create a table that can be the input of the
next operator. However, if one operand of the selection is
a subquery, the code generator needs to generate code that
processes the subquery. As shown in Figure 4, the correlated
columns, i.e., R.col2, are loaded into GPU device memory.
The code processing the subquery will be generated in an
iterative loop with the size of the input table of the selection
operator, i.e., the tuple number of R. In the loop, the generated
code uses each correlated value, i.e., R.col2[i], to do
the selection. The results may be used as the input for the
following operator in the subquery, and the final results are
stored into the vector according to current iteration number,
i.e., Res[i]. Following the loop, an upper level selection
is to evaluate the predicate containing the subquery, i.e., the
selection on R.col1 and Res. In this method, our code gen-
erator recursively traverses the query plan tree but generates
iterative code for the subquery in the selection operator.

Join with a subquery. The code generation for a join
operator that contains a correlated subquery is different from
that for a selection operator, because we need to determine the
iteration number for the subquery. There are two cases. First, if
correlated tuples come from one of the two tables of the join,
the iteration number is equal to the corresponding table size.
Second, correlated tuples come from both of the join tables.
The iteration number is the Cartesian product of two tables.
Figure 5 shows the generated code for these two cases, where
the difference is marked as red. Besides the code generated
for the subquery, the code for the join operator containing
the subquery is also different. For the second case, the join
operator following the loop needs to use both the left and
right tuple IDs to locate the subquery result from Res. If

the join containing correlated subqueries is a nature join and
all its predicates are connected by AND, we can optimize the
query by first joining two tables with the predicates without
correlated subqueries, and then performing a selection over
the result table for predicates containing the subqueries. This
can effectively reduce the iteration numbers to call subqueris
and hence improve the performance.

Subquery in a subquery. Our code generation framework
can handle a query with arbitrary levels of correlated sub-
queries. Figure 6 shows a complete work flow to generate
the drive program for the three-level query of Figure 3, in
which both subqueries are correlated with its upper-level query
block. In Figure 6, the code pieces marked by different colors
correspond to the subqueries at different levels. At each level,
the generated code evaluates the subquery and stores its results
into a vector that will be fed back to the operator at the upper
level. In this way, we handle nested subqueries by recursively
traversing the query plan tree on CPU and generating the
iterative code blocks in a nested loop with the push mode.

For type-JA correlated subqueries, every subquery evalua-
tion returns a scalar and the result size is fixed. The results
can be organized as a vector residing in a space of continuous
memory, like any table columns. But type-J correlated sub-
queries are different because their results have variable lengths.
An example is a type-J subquery with an IN operator, e.g.,
R.col1 IN (...). For such subqueries, we use a two-
level arrays to store the results of subquery evaluations. The
first level is to store the lengths of variable results for each
subquery evaluation and the second is to store the results.

C. Memory Management

Due to the iterative execution of subqueries, memory man-
agement becomes inefficient if the raw system interfaces like
malloc are frequently called. Thus, NestGPU build memory
pools for efficiently managing memory towards table columns,
meta data, intermediate tables, and inter-kernel results.
Memory pools: Memory pools are designed to contain data
that needs to be frequently allocated and freed on both the host
and device memory. There are three types of data that should
be put into memory pools, including meta data, intermediate
tables, and inter-kernel results. The meta data is the meta
information used at the host side, including the column types,
the tuple number of a table, and others. The intermediate tables
are composed of column data produced by an operator, which
is the input of the next operator. As an operator may consist
of several GPU kernels, the inter-kernel results are temporary
data on GPU from one kernel to the following one, e.g., a
0-1 vector generated by the prefix-sum kernel will be used as
the input of a materialization kernel to determine which tuples
should be written to the device memory.

In NestGPU, individual memory pools are used for these
three types of data. The memory is linearly allocated in all
memory pools, by moving forward the tail pointers. Deallo-
cation means moving backward the tail pointers while setting
the tail pointer to the head of a memory pool means releasing
all allocated memory in it. For inter-kernel results, NestGPU



The outmost query

JOIN: LEFT.col1 > 
SUBQ(2, RIGHT.col1)

SELECTION: R.col1 = 
SUBQ(1, R.col2)

Level 0

Level 1

Level 2

…
LoadToGPU(R.col1);
LoadToGPU(R.col2);
for(int i0 = 0; i0 < R.tupleNum; i0++) {    

// Generate code for subquery#1
…
LoadToGPU(LEFT.col1);
LoadToGPU(RIGHT.col1);
for(int i1 = 0; i1 < RIGHT.tupleNum; i1++) {

// Generate code for subquery#2
…
Res1[i1] = Materialize(resultTable1);

}
Table joinRes = JOIN(“>”, LEFT.col1, Res1);
…
Res0[i0] = Materialize(resultTable0);

}
Table selectionRes = SELECTION(“=“, R.col1, Res0);
…

SELECT …
FROM R, …
WHERE …

R.col1 = 
(SELECT …
FROM LEFT, RIGHT, …
WHERE …

R.col2 = …
…
LEFT.col1 > 

(SELECT …
FROM …
WHERE …

RIGHT.col1= …
…)

…)
…

;

SQL query Query plan trees Drive program

Fig. 6: The work flow eventually generating a drive program for a 3-level correlated nested query

…
void *hostPos1 = host_mempool.tail;
void *interPos1 = inter_mempool.tail;
for(…) {    

// Generate code for a level-1 subquery
…

void *hostPos2 = host_mempool.tail;
void *interPos2 = inter_mempool.tail;
for(…) {

//Generate code for a level-2 subquery
…
Table t = SELECTION(…, inter_kern_mempool);
inter_kern_mempool.tail = inter_kern_mempool.head;
…
host_mempool.tail = hostPos2;
inter_mempool.tail = interPos2;

}
…
host_mempool.tail = hostPos1;
inter_mempool.tail = interPos1;

}
…

Free space for the meta data

Free space for the 
intermediate tables

Free space for the 
inter-kernel results

Record where to free 
for the meta data

Alloc space for the 
inter-kernel results 
in current operator

Record where to free for 
the intermediate tables

Fig. 7: The use cases of memory pools for three types of data: meta
data, intermediate tables, and inter-kernel results

clears the memory pool after the execution of an operator.
For meta data and intermediate tables, their tail positions are
recorded before the subquery execution. After the execution
of an iteration of the subquery, the tail pointer position is
recovered so that the space allocated in the previous iteration
can be reused. Figure 7 shows how the memory pools are used
in a drive program generated for a 3-level subquery.
Preloaded columns: To avoid frequent data loading, we
preload the required columns and move them to GPU device
memory before the subquery loop is executed and release them
after all iterations. If the device can not hold all columns, we
separate the device memory into two parts. One holds the
preloaded columns and the other is used for on-demand load-
ing. Two principles guide column preloading: (1) the columns
used by a more inner-level subquery have a higher priority;
and (2) for the columns at the same level, a smaller table has
a higher priority as sequential reads are more efficient.

Most of those techniques to improve GPU memory manage-
ment, e.g., allocating large memory pools, assigning memory
regions to different data, and preloading partial data dependent
on available memory size, are used in the existing systems [40]

[26]. We apply these techniques into the nested structures of
subqueries for high performance of memory accesses.

D. Other Optimizations

Indexing: Since the passed-in parameter varies and the
nested query block has to be re-evaluated in the loop, building
an index over the correlated columns could narrow the scan
range in every iteration and improve the performance. In Query
1, the index could be built on S.col1. Every time when we
scan table S with a different passed-in R.col1 tuple in the
predicate R.col1 = S.col1, we can locate a valid range
of S.col1 by using the binary search on the index and only
scan a portion of table S. However, building such an index
for correlated columns needs additional time as well as space,
e.g., O(N · logN ) time is used to sort a correlated column (N
is the size of the column) and O(2N ) more space is required
to store the sorted values and their original positions. Thus,
we carefully evaluate if the time saved by indexing is offset
by the extra time for the sort and if we have enough space to
hold the indexing results.

Vectorization: Inside a nested loop, NestGPU evaluates the
subquery iteratively, where operators are sequentially evalu-
ated on GPU. If the data size of intermediate results between
two operators is too small to fully exploit all cores of GPU,
the performance is degraded. Query 3 shows an example that
may have such an issue. In the nested part of the query, a
selection using the passed-in T.col1 tuple is executed before
joining T and S. If the selection only produces few tuples
as the result, the join may have poor performance as most
GPU cores are not used. Thus, we implement the vectorization
that fuses GPU kernels of multiple subqueries with different
passed-in parameters and evaluates them in a single kernel.
This can increase the GPU occupancy and thus improve the
overall performance.

Invariant Component Extraction: In the nested query
block, we usually find invariant components that won’t change
with different passed-in parameters. In Query 3, despite that
we join T and S every time when we evaluate the subquery, we
can build a hash table for table S once and only perform the



SELECT R.col1, R.col2
FROM R
WHERE R.col2 = (
SELECT min(T.col2)
FROM T, S
WHERE T.col1 = R.col1 AND
S.col1 > 0 AND
T.col3 = S.col3);

Query 3: Two selections and a join in a nested query block

probe in the iterative. To generally extract such invariant com-
ponents from a nested query block, we implement the method
in [8] to distinguish which operations could be executed once
and which ones are not.

Before generating the iterative code for a subquery, we mark
all nodes in its query plan tree as invariant except the ones
containing correlated columns that are marked as transient.
Then the transient flag starts to spread upward. If one child
of a node is transient, the flag of this node is modified to
transient until we reach the root node. After traversing the
query plan tree of a subquery and all nodes are marked
correctly, NestGPU generates code for the invariant nodes,
which are small trees embedded in the original one. Their
results are intermediate tables inside the nested query block
and will be used later. A specific optimization is for the join
operator. If the children nodes of the join are both transient
(or invariant), the code of each child should be put inside (or
outside) the iteration. If one child of the join is transient and
the other is invariant, NestGPU will build the hash table on
the invariant child and use the transient child to probe.

Caching: If the passed-in parameter is not a primary key,
subqueries would be re-evaluated with duplicate values. Thus,
we build a cache for the results evaluated from the subquery,
whose key is the combination of the passed-in parameters. This
caching technique improves performance if a highly skewed
distribution is observed on the passed-in columns.

Although these techniques are used in the existing systems
and are not the major contributions of this work, some of
them are specifically efficient for the nested query processing.
For example, under the nested structure, a single kernel is
likely to underutilize GPU resources. We use vectorization to
fuse multiple kernels. Also, under the nested structure, if the
passed-in tuples from the outer loop have locality, we use
caching to avoid redundant computation in the subquery.

IV. COST MODEL

The cost model is to predict the execution time of a nested
query, involving a number of unique factors on GPU, e.g.,
the number of GPU cores, the bandwidth of data transfers,
the latency of memory accesses, and the number of GPU
kernels. These factors are also considered on top of the regular
problems in CPU query processing, including join cardinality,
filter selectivity estimation, time spent on fetching pages from
the disk, etc. To keep the complexity reasonable, we assume
nested queries are executed on a single GPU exclusively.

We first estimate the time of a single database operator, e.g.,
a selection or an aggregation. In NestGPU, these operations

are performed by multiple GPU kernels followed by a mate-
rialization step. Thus, we breakdown the execution time of a
single operator (Top) into several parts as:

Top =

Nk∑
i=1

(Ki ∗ d
Di

Thi
e) + (M ∗Dr ∗

Rc∑
i=1

(Rsi)) + C. (1)

The first part of Eq. (1) estimates the time needed by GPU
to execute all primitive kernels. We denote the number of
GPU kernels involved as Nk, the data input size as Di and
the number of GPU threads as Thi. We estimate how many
iterations will be performed by each thread by dividing Di

with Thi. In the equation, Ki is the time needed to perform
a single iteration that depends on the instructions executed
in the kernel. One method to estimate Ki is actually running
the query once and reusing this value for all predictions. An
alternative way for Ki estimation is based on the total number
of memory transactions [21]. In our evaluation, we use the
former method since the optimizations, e.g., using GPU reg-
isters for a fast sorting implementation [38], make the global
memory transaction-based method less accurate. Ki is actually
the parameter that includes the runtime stats. It is different
from the previous studies that abstract runtime parameters into
the cost model, but we find it is efficient to incorporate runtime
information in this way for two reasons. First, we assume
that GPU does not process any other workload and thus, Ki

is stable and does not rely on the operating system. More
importantly, in the nested execution structure that includes
many iterations to execute a subquery, it is practical to execute
the inner part only once and get all Kis for different operators.
The second part of Eq. (1) is on the materialization cost. For
most operations, the materialization cost is linear with the size
of output data. Thus, we calculate it by multiplying the number
of rows in the result Dr, the time needed to materialize a
single byte M , and the accumulation of Rsi that is the size
of column i with Rc the number of columns. The third part
is a constant time C. It is the time to execute a GPU kernel
with an empty input.

Notice that the estimation on a join operation is more
complicated than that by Eq. (1). As mentioned in Section
III-D, NestGPU may build the hash table once and reuse
them multiple times in the nested query block. Thus, we need
to estimate the costs of building a hash table and probing a
hash table separately. Furthermore, the materialization of a join
operation is more complex as it uses two different kernels to
materialize the columns from the left table and the right table,
respectively. We decompose the cost of a join as the time to
build the hash table (Tjh), to probe the hash table (Tjp), and
to materialize the result (Tjm):

Tjh = Ht ∗ d Di

Thi
e, (2)

Tjp = P ∗ d Di

Thi
e, (3)

Tjm = (Ml ∗Dr ∗
Rcl∑
i=1

(Rsi)) + (Mr ∗Dr ∗
Rcr∑
i=1

(Rsi)). (4)



In Eq. (2), the execution time of an iteration to build the
hash table is denoted as Ht and in Eq. (3), the time of an
iteration to probe an element is denoted as P . For Tjm in
Eq. (4), the materialization cost is estimated as the sum of
materializing results from the left and right tables. For data
from the left table, we estimate the cost by multiplying the
time needed to materialize a single byte Ml, the number of
rows in the result Dr, and the size of each row from the
left table that is the accumulated sum of the column lengths
included in the result (

∑Rcl
i=1(Rsi)). Similarly, we can get the

estimation time of materializing results from the right table.
Notice that we differ Ml and Mr since the materialization
time is different on the left and right tables observed in
our experiments. This is because the structures of the tables,
including the lengths of materialized columns and their strides,
will significantly affect the time of memory copy on GPU. The
final cost of a join denoted as Tj can be estimated as:

Tj = Tjh + Tjp + Tjm + C. (5)

We also need to consider those optimizations proposed in
the previous section, specifically the cache optimization. If the
size of the outer table is S and the cache hit times is Ch, the
nested part will be executed S−Ch times. To estimate the time
of the nested part, we add the cost of scans and aggregations
from Eq. (1) and the cost of joins from Eq. (5). Notice that
for the join we only add the Tjp and Tjm into the nested
computation if the hash table build (with the time Tjh) can be
moved out. Assuming there are NOps scans and aggregations
and NJops joins in the nested query block, the total cost of
the nested part, denoted as N , can be estimated as:

N = (S−Ch)∗[
NOps∑
i=1

(Topi)+

NJops∑
i=1

(Tjpi+Tjmi)]+

NJops∑
i=1

(Tjh).

(6)
NestGPU optimizes memory accesses by using memory

pools and preloading table columns. We consider both opti-
mizations and estimate the memory-related cost only once for
each operation in the nested block. We denote the memory-
related cost for each operation as Tmem and calculate it based
on how much data the operation needs to transfer and how
much memory to be allocated. We estimate the whole memory-
related costs of the nested part, denoted as Nmem, as:

Nmem =

NOps+NJops∑
i=1

(Tmemi). (7)

Finally, to complete the estimation, we also need to add the
cost of the outer block that is denoted as U . We estimate it as
the sum of all scans and aggregations, denoted as UOps and
all joins, denoted as UJops and have:

U =

UOps∑
i=1

(Topi) +

UJops∑
i=1

(Tji) +

UOps+UJops∑
i=1

(Tmemi). (8)

The total cost of a nested query, denoted as Q, is:

Q = N +Nmem+ U. (9)

In our implementation we also estimate the I/O time as
a division between the needed data and the available disk
bandwidth. The I/O time is not a consideration in the cost
model evaluation of this work.

A good estimation of the cost model depends on Drs
in Eq. (1) and Eq. (4) that represent filter selectivity and
join cardinality, respectively. Estimating these two parameters
have been exploited in both the offline methods and the
online solutions, e.g., sampling and indexing [41] and parallel
algorithms [42]. We notice that there is a promising solution
[43] for heterogeneous computing resources. To accurately
estimate these parameters, we break the subquery into pieces
as “execution islands” [43], by partitioning the iterations of
the subquery. For each partition, we execute several iterations
and use the results to estimate Drs. Under the nested structure,
executing several iterations for each partition of the subquery
may be expensive. We set a threshold to determine the trade-
off between the estimation cost and the prediction accuracy.
We expect that this method will highly improve the accuracy
of the cost model since Drs are adaptive in the subquery
execution. In the cost model evaluation (Sec. V-C), we make
the assumption that Dr is known in advance for the simplicity.

The reasons why we design our cost model for correlated
subqueries rather than use an existing one, like GPL [23],
are summarized as follows: (1) The execution code gener-
ated by NestGPU is structurally different from other GPU-
based database systems. For example, GPL is designed for
flat queries and focuses on how to improve GPU utilization
when concurrently executing multiple kernels. In GPL, TPC-
H Q5, Q7, Q8, Q9, and Q14 are evaluated. None of them
has correlated subqueries. (2) Furthermore, GPL’s cost model
might yield different results for correlated subqueries. Under
the nested structure, a single kernel is likely to underutilize
GPU resources. Thus, we use the vectorization technique
in Section III-D to fuse multiple kernels (from many to
one); while in order to overlap CPU-GPU data movement
and GPU kernel execution in a pipeline mode, GPL’s cost
model considers how to partition data into chunks and launch
concurrent kernels (from one to many). (3) Some optimizations
that are not included in GPL are crucial for efficient nested
query processing. For example, caching can avoid redundant
computations in the iterative structure of subquery processing
in NestGPU. It is simple but efficient. Therefore, in our cost
model, Ch is added to characterize this optimization.

V. EVALUATION

We evaluate NestGPU on different queries and datasets.
Hardware configurations. We use a server with two In-
tel Xeon E5-2680 v4 CPUs (28 cores in total) running at
2.40GHz. The server also has 128GB main memory with
Linux CentOS 7. The GPU on it is an NVIDIA Tesla V100
with 32GB high bandwidth memory (HBM). We evaluate GPU
memory utilization on a desktop machine that has an Intel
Core i7-3770K CPU running at 3.50GHz, 32GB main memory,
and an NVIDIA GTX 1080 GPU with 8GB GDDR5 memory.
Queries. We use TPC-H Q2, Q4, and Q17 [44]. These three
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Fig. 8: TPC-H Q2
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Fig. 9: TPC-H Q4
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Fig. 10: TPC-H Q17

queries have a type-JA subquery. We also use the modified
Q2 queries to evaluate NestGPU under different conditions.
Datasets. We generate all datasets with the standard TPC-H
data generator and change the scale factor from 1 and 20 (up
to 100 only for the memory utilization test). Peer systems.
We use PostgreSQL v12.1 [45] and MonetDB v11.37 [46] on
CPU and the open-source software OmniSci [29] and GPUDB
[21] on GPU for comparisons. We first enhance GPUDB from
only allowing Star Schema queries to accept TPC-H queries.
We also enhance it by applying our memory management
mechanisms. Thus, we call the enhanced GPUDB as GPUDB+
in the following experiments. All nested queries used in our
experiments cannot be automatically unnested by PostgreSQL,
OmniSci, and GPUDB+. Thus, if the queries can be unnested
by Kim’s method [2], we manually rewrite the nested queries
to their unnested equivalents. For MonetDB, we measure the
nested queries since they can be automatically unnested by
MonetDB during execution. We report the execution time in
milliseconds where the disk I/O time is excluded.

A. Evaluations on TPC-H Q2, Q4, and Q17

Figures 8, 9, and 10 show the execution time of PostgreSQL,
MonetDB, OmniSci, GPUDB+, and NestGPU with TPC-H
Q2, Q4, and Q17 on our server node. For TPC-H Q2 shown
in Figure 8, PostgreSQL takes ∼13 minutes and ∼31 minutes
to run the nested version even with the table scales at 1 and
5. So we will not present its results of the larger scales. For
the unnested version of TPC-H Q2, PostgreSQL takes 263 ms
to 4763 ms to execute the query. By looking into the runtime
information, we find that PostgreSQL only uses a single thread
even on a multicore system. On GPU, OmniSci takes 188 ms
to 1904 ms and GPUDB+ takes 143 ms to 1109 ms to run the
unnested query, while NestGPU uses 246 ms to 4041 ms to
run the nested one. OmniSci and GPUDB+ are at most 2.12x
and 3.73x faster than NestGPU, respectively. Even though the
higher computational complexity, in this case NestGPU has the
comparable performance to OmniSci and GPUDB+ on GPU.

Figure 9 shows the performance results on TPC-H Q4. In
Q4, the subquery is in an EXISTS operator and the execution
can be optimized by applying a semi-join operator, instead
of executing the whole nested loop. OmniSci and GPUDB+
do not use this optimization. Furthermore, GPUDB+ has a
memory issue in GROUP BY that failed the execution. Thus,
we compare NestGPU with other systems than GPUDB+ in
this test. The results show that NestGPU can outperform

PostgreSQL in all cases. NestGPU is 2.44x, 4.91x, 6.10x,
6.86x, and 6.76x faster than PostgreSQL on the nested Q4
when the scale factors varying from 1 to 20. The performance
gains come from the massive parallelism of the semi-join
implemented on GPU. The unnested Q4 is executed slower by
PostgreSQL compared to the nested one. That is because an
additional GROUP BY is used to remove redundant tuples for
the inner table. NestGPU is 14.55x, 48.17x, 60.65x, 65.65x,
and 66.35x faster than PostgreSQL and is 6.97x, 13.17x,
15.11x, 11.18x, and 11.66x faster than OmniSci when they
run the unnested Q4 with different scale factors, respectively.

Figure 10 shows the execution time on TPC-H Q17. The
structure of Q17 is similar to that of Q2, but Q17 has a much
larger inner table, i.e., LINEITEM. PostgreSQL is significantly
inferior than others when it executes the nested Q17. It takes
∼23 minutes even on the smallest table with the scale factor 1.
Thus, we don’t present its results with the larger scale factors.
In this case, NestGPU is 2.11x, 5.51x, 4.74x, 4.19x, and 4.09x
faster than PostgreSQL executing the unnested Q17. However,
OmniSci and GPUDB+ that execute the unnested Q17 both
have better performance, running up to 7.27x and 16.58x faster
than NestGPU even if NestGPU enables all optimizations.

MonetDB is one of the fastest database systems on CPU
with optimized query plans for TPC-H queries and hardware-
related optimizations. In our evaluation, MonetDB takes 31
ms to 138 ms, 30 ms to 334 ms, and 34 ms to 239 ms to run
TPC-H Q2, Q4, and Q17, respectively. It achieves the best
performance and its excellent performance comes from the
following three parts. First, the data movement between CPU
and GPU counts a non-negligible percentage of the execution
time in GPU-accelerated systems. For TPC-H Q2, the CPU-
GPU data movement consumes up to 19.55% of the execution
time of NestGPU. This overhead doesn’t exist in MonetDB.
Second, the evaluation of MonetDB is carried out on two Intel
Xeon E5-2680 v4 CPUs, each of which has 14 cores and
35 MB L3 cache. That is a powerful hardware configuration.
Third, most importantly, MonetDB applies unique techniques
to optimize query plans, e.g., it can reduce cardinalities in the
inner query by pushing down predicates from the outer query.
This method can mostly optimize performance of Q2 and Q17.

B. Evaluations on TPC-H Q2 Variants

We further evaluate NestGPU with TPC-H Q2 variants.
The variants are all derived from the base query presented
in Query 4, which is TPC-H Q2 with an additional predicate
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Fig. 11: Query 5 that cannot be unnested

0

200

400

600

800

1 5 10 15 20

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Scale Factor

GPUDB+
NestGPU

Fig. 12: Query 6 having a smaller outer table
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Fig. 13: Query 7 having a larger outer table

1: SELECT
...
+13: AND p_brand = ’Brand#41’

Query 4: TPC-H Q2 with an additional predicate in the WHERE
clause of the outer query block

to reduce the execution time on large tables. First, we change
the predicate in Q2 and have Query 5 that cannot be unnested
[16], [17] by the commonly used strategies. Second, we make
Query 6 that has a smaller outer table. Third, we make Query
7 that has a larger outer table to evaluate the indexing. Finally,
we make Query 8 that has a larger inner table to evaluate GPU
memory footprint in both the nested and unnested methods.

16: AND ps_supplycost > (
...
22: p_partkey != ps_partkey

Query 5: from Query 4 but cannot be unnested

For Query 5 that cannot be unnested, PostgreSQL recur-
sively evaluates the subquery as what NestGPU does. The
results are shown in Figure 11. When the scale factor varies
from 1 to 20, the speedup of NestGPU over PostgreSQL is
from 109x to 359x. In summary, when a nested query cannot
be unnested, the nested method is the solution to execute
the query, and NestGPU on GPU can achieve two orders of
magnitude better performance over PostgreSQL on CPU.

+11: AND p_container like ’%BAG’
12: AND p_size = 20

Query 6: from Query 4 but having a smaller outer table

We compare NestGPU with GPUDB+ on Query 6 that has a
smaller outer table, and the results are shown in Figure 12. For
all scale factors, NestGPU outperforms GPUDB+ in execution
time. More specifically, the nested query block of Query 6 is
only evaluated 116 times because of the added predicate. For
such a small outer table, it is more efficient to perform a simple
aggregation over a column multiple times than a GROUP BY
followed by a large JOIN. The experiment shows that when
the outer table is sufficiently small, NestGPU can provide
better performance than the unnested method on GPU. The
cost model further provides the quantified information to the
query optimizer if the nested method is better.

We evaluate the indexing technique by using Query 7 that
has a larger outer table. Figure 13 shows the execution time

-13: AND p_brand = ’Brand#41’

Query 7: from Query 4 but having a larger outer table

of NestGPU with and without the indexing technique. Without
it, NestGPU completes the query in 772 ms to 22956 ms on
different scale factors of datasets; while with it, the execution
time is reduced to 570 ms to 10557 ms that even includes the
index building time. The experimental results show that for a
larger outer table, indexing could lead to better performance.

-25: AND r_name != ’ASIA’

Query 8: from Query 4 but having a larger inner table

We also check when the unnested method will run out of
GPU device memory. We make Query 8 that has a larger inner
table and run the test on our desktop machine that has an
NVIDIA GTX 1080 GPU with 8GB device memory. In the
experiment, we change the scale factors to 20, 40, 60, 80, and
100 to enlarge the memory usage and show the experimental
results in Figure 14. At the scale factors of 20, 40, and
60, the performance gap between NestGPU and GPUDB+
ranges from 2x to 3.7x. The unnested method GPUDB+ has
higher performance due to its lower computation complexity
than that of the nested method NestGPU. However, when the
scale factor is beyond 80, GPUDB+ runs out of GPU device
memory, while NestGPU can still correctly execute the query.

C. Cost Model Verification

Finally, we evaluate the cost model of NestGPU. We verify
the accuracy of three relational operators from Query 4 and
then verify the accuracy for the whole nested query. In Figure
15, we denote the real execution time with (R) and the
estimated time by the cost model with (E). The error rate
between the estimated time and the real execution time is from
0.49% to 17.75%, from 4.03% to 17.48%, and from 0.15% to
7.66% for selection, join, and aggregation, respectively. Figure
16 shows that the results on the whole nested query. The error
rate is up to 12.7% with the scale factor 20.

VI. RELATED WORK

Optimizing query processing operators on GPU. He et
al. [18] implement and optimize the operators, e.g., map,
scatter/gather, prefixScan, etc., on GPU and use them to
construct join algorithms. Paul et al.[23] propose a pipelined
execution mechanism on GPU, focusing on concurrent kernel
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execution and communication optimization between kernels.
Sioulas et al. [26] optimize hash join on GPU by exploiting
GPU architecture characteristics, partitioning large dataset, and
executing Join in a pipelined manner.

GPU-accelerated database systems. GPUDB [21] is a
query processing system on GPU. For a SQL query, GPUDB
generates a drive program with pre-implemented GPU kernels
and executes the program on GPU. With the performance
analysis on multiple queries, GPUDB concludes that the query
processing performance on GPU is determined by CPU-GPU
data transfer and GPU device memory access times. MapD
[22] (rebranded to OmniSci) is another GPU-based query
processing system. It implements a memory management
system that uses the LRU policy to manage GPU device
memory and swap data between CPU and GPU. HorseQC
[24] is a pipelined query processing system on GPU. It uses a
compound kernel method to fuse multiple kernels into a single
kernel so that intermediate data movement between kernels
can be significantly reduced. HAPE [25] is a Heterogeneity-
conscious Analytical query Processing Engine that uses both
multi CPUs and multi GPUs for query execution. It imple-
ments the hardware conscious hash join operators [26] and the
efficient intra-device execution methods for multiple operators.
H2TAP [27] optimizes HAPE by using the lazy data loading
and data transfer sharing so as to increase the CPU-GPU
bandwidth usage and to bridge the throughput gap between
GPU and PCIe. Hawk [47] is a hardware-adaptive query
compiler that can compile queries into OpenCL kernels with
low compilation time and without manual tuning. DogQC [28]
identifies filter and expansion divergence in GPU-accelerated
database systems and proposes the push-down parallelism
and lane refill techniques to balance the divergence effects.
HetExchange [40] is another query execution engine on het-
erogeneous hardware and focuses on the multi-CPU-multi-
GPU configuration. SEP-Graph [48] is a GPU query process-
ing engine for graph algorithms. It automatically selects the
execution path with three pairs of critical parameters, i.e., sync
or async mode, push or pull communication mechanism, and
topology- or data-driven traversing scheme, with an objective
to achieve the shortest execution time in each iteration.

The code generation for subqueries presented in this paper
is uniquely different from these GPU systems. First, a common
practice in the existing systems is to use CPU to call different
pre-implemented GPU kernels in the generated program, as
using an GPU kernel to call another GPU kernel is inefficient

and impractical (on the contrary, on CPU, the code generation
for a subquery operator SUBQ is to use a CPU function to call
another CPU function just like the flat query). Thus, a database
operator, e.g., Join and Selection, is represented as a single
operator and corresponds to one or limited-numbers of GPU
kernels in the existing work and also in ours. However, since a
subquery can implement any query logic and hence can have
arbitrary numbers of combinations of database operators, it is
impossible to pre-implement limited-numbers of GPU kernels
for a subquery. Therefore, in our work, a crucial design is
to generate a for loop for a SUBQ, instead of compiling it
into GPU kernels in other GPU database systems or into a
CPU function in CPU systems. Second, when dealing with
a subquery, we analyze the query and apply corresponding
optimizations into the query plan tree for different cases,
e.g., Selection with a subquery, Join with a subquery, and
Subquery in a subquery (in Section III-B). The subquery-
specific optimizations are not used in existing systems. In
summary, both the structural change in compilation and the
specific optimizations for subqueries are new contributions.

Unnested methods. The unnested methods have been ex-
tensively researched in the past 40 years [2], [3], [9], [14],
[16]. There are two basic strategies for type-JA subqueries
[2], [3]. Kim’s method does an aggregation on the inner table
followed by a join with the outer table [2]. Dayal’s method first
does an outerjoin on correlated tables and then an aggregation
followed by a filtering [3]. Galindo-Legaria et al. [9] develop
the APPLY operator, identifying that both Kim’s and Dayal’s
methods can be included in the normalization rule. Cao et
al. [14] focus on unnesting type-J subqueries. They propose
a nested relational algebra based approach to unnest non-
aggregate subqueries with hash joins and to treat all subqueries
in a uniform manner. Neumann and Kemper [16] show that the
efficiency of an unnested strategy depends on the correlated
operator of the subquery and the structure of the subquery.
They propose dependent joins to unnest arbitrary subqueries
with a new operator, i.e., MAGIC.

VII. CONCLUSION

We present NestGPU, a GPU-based database system to
accelerate subquery processing under the nested structure. In
contrast to a customized approach of the unnested method,
our nested method is general-purpose with minimized devel-
opment efforts in its usage, and also retains high performance.
To accomplish our goals, we develop a new code generation



framework to make the nested method best fit on GPU
along with a set of optimizations for high performance. With
NestGPU, we are able to efficiently process nested queries
that cannot be algorithmically unnested and nested queries
that can be unnested but failed to run on GPU due to limited
GPU memory capacity. In other representative cases, NestGPU
achieves comparable performance with that of the unnested
method, while outperforms the unnested method if the outer
table is relatively small. We also develop a cost model to
predict the execution time of the relational operators under the
nested structure, aiming to guide the database query optimizer
to select the shortest execution method for nested queries.

In the post-Moore’s Law era, a highly efficient program is
no longer machine independent; but comes from a balance
among three critical factors: low algorithm complexity, low
data movement, and high parallelism. In this paper, we have
made a case to significantly raise the execution performance
of the nested method in high complexity by exploiting massive
parallelism and device memory locality on GPU. In this way,
we accomplish the goal for both general-purpose in software
design and high performance in subquery processing.
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